(x+7)(-x+20)=3x-29

Simple and best practice solution for (x+7)(-x+20)=3x-29 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+7)(-x+20)=3x-29 equation:



(x+7)(-x+20)=3x-29
We move all terms to the left:
(x+7)(-x+20)-(3x-29)=0
We add all the numbers together, and all the variables
(x+7)(-1x+20)-(3x-29)=0
We get rid of parentheses
(x+7)(-1x+20)-3x+29=0
We multiply parentheses ..
(-1x^2+20x-7x+140)-3x+29=0
We get rid of parentheses
-1x^2+20x-7x-3x+140+29=0
We add all the numbers together, and all the variables
-1x^2+10x+169=0
a = -1; b = 10; c = +169;
Δ = b2-4ac
Δ = 102-4·(-1)·169
Δ = 776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{776}=\sqrt{4*194}=\sqrt{4}*\sqrt{194}=2\sqrt{194}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{194}}{2*-1}=\frac{-10-2\sqrt{194}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{194}}{2*-1}=\frac{-10+2\sqrt{194}}{-2} $

See similar equations:

| 3(x−1)2−10=8 | | 6(1+3n)=-138 | | x+2/8=-4 | | 7(s+3)=5s+27 | | 34-4(2w+1)=10-w-4(10+w) | | 17x+8-2x=4x-36 | | (3n-1)=2(n+5) | | 2x-9=7x+24 | | -4m-10=-6m+10 | | 34-4(2w+1)=10-w(10+w) | | 7x+8-2x=4x-36 | | 2x+5+3x+2+6x-17=x | | -2(4+3r)=-34+4r | | R-10=10-4r+10 | | -1/2=-5/4x+9/4x | | 5x-7x=43 | | 8(6t+2)=48t+16 | | 8=q-12 | | -3j=-9-6j | | 6z-4=107 | | 15x-24=15x-24 | | (6+v)(2v-5)=0 | | 5(x-3)+2=2x-6 | | -1-g=-9g-9 | | -27=-9-e | | 6r+8=5r | | F=7/2(n-37) | | -4y+60=-6(2y-10) | | 13y-1=45 | | 10w=9w-2 | | 8x-2(x+5)=20 | | 3.95x+2.75=22.50 |

Equations solver categories