If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+7)(x+9)=4x+31(x+7)(x+9)=4x+31
We move all terms to the left:
(x+7)(x+9)-(4x+31(x+7)(x+9))=0
We multiply parentheses ..
(+x^2+9x+7x+63)-(4x+31(+x^2+9x+7x+63))=0
We calculate terms in parentheses: -(4x+31(+x^2+9x+7x+63)), so:We get rid of parentheses
4x+31(+x^2+9x+7x+63)
determiningTheFunctionDomain 31(+x^2+9x+7x+63)+4x
We multiply parentheses
31x^2+279x+217x+4x+1953
We add all the numbers together, and all the variables
31x^2+500x+1953
Back to the equation:
-(31x^2+500x+1953)
x^2-31x^2+9x+7x-500x+63-1953=0
We add all the numbers together, and all the variables
-30x^2-484x-1890=0
a = -30; b = -484; c = -1890;
Δ = b2-4ac
Δ = -4842-4·(-30)·(-1890)
Δ = 7456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7456}=\sqrt{16*466}=\sqrt{16}*\sqrt{466}=4\sqrt{466}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-484)-4\sqrt{466}}{2*-30}=\frac{484-4\sqrt{466}}{-60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-484)+4\sqrt{466}}{2*-30}=\frac{484+4\sqrt{466}}{-60} $
| 2b+5=b+2 | | 6=c2+3 | | 43x-2+35x+14=180 | | 4x^{3}+15x^{2}-12x=0 | | 24+38=x | | –3f=–6 | | k+12=7 | | −4(x+3)=72 | | d4-2=2 | | x^2+55=−9 | | 4d+6=4+6d | | -h1+-5=-8 | | 120+x+20=180 | | 2h+7=-3+3h | | 4(2z-8=16 | | 7/2g+8=1/g-1 | | -11(-x+26)-27(x+26)=15x-15x | | 11x–4x+6=27 | | q4+-9=-11 | | -8-3j=-7j | | x-2=1/4x+17/4 | | -14+132=26(x-18) | | 7m–3m–6=6 | | 2r-2r+4r=20 | | X2+x=51 | | 55=12+4w | | 5(2+y)=55 | | 3t-t-2t+2t=16 | | 7x-34=-6 | | 5(2x-6)+12=5x-8 | | -4x-5=-10+6x | | 40z-38=17+29z |