(x+7)(x-7)=-3

Simple and best practice solution for (x+7)(x-7)=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+7)(x-7)=-3 equation:



(x+7)(x-7)=-3
We move all terms to the left:
(x+7)(x-7)-(-3)=0
We add all the numbers together, and all the variables
(x+7)(x-7)+3=0
We use the square of the difference formula
x^2-49+3=0
We add all the numbers together, and all the variables
x^2-46=0
a = 1; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·1·(-46)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*1}=\frac{0-2\sqrt{46}}{2} =-\frac{2\sqrt{46}}{2} =-\sqrt{46} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*1}=\frac{0+2\sqrt{46}}{2} =\frac{2\sqrt{46}}{2} =\sqrt{46} $

See similar equations:

| y^2-10y-29=0 | | 3(b+7)=3(b-3) | | 3x-3(2x+3)=7-5x | | 6y=5y-11 | | x^2+x-5120=0 | | x^2+2x-5120=0 | | (x+1/4)^2=(√31/16)^2 | | 2x-7/3x+2=4 | | (x-4)^2=168 | | 3(p-3)=4p | | -8+4m=23 | | 7+15x=100 | | -8+4m=m | | -34+9y+9=(4y-2)-4 | | 4(c-2)+9=6+c-5 | | (2/x)-5/3=12/x | | 4y^+20y=0 | | 5u^-10u=0 | | 5(1-x)+3(1+x)÷1-2x=8 | | (2x+4)/4=8 | | (x)/4-2=5 | | 9+(x)/2=14 | | 50=10√10^2-y^2 | | x-1/7x-14=x-3/7x-26 | | 4(x-5)+2=3x+7 | | 15/7-3x=4/3 | | 9p/14+19=2p | | s-11*5=20 | | 4(3s+10)=76 | | 2(m+4)=10 | | 4(3+x)=8-4x | | 1500÷x-1500÷x+250=1 |

Equations solver categories