(x+8)(x)+(x+4)(x+12)=(x+8)(x)+160

Simple and best practice solution for (x+8)(x)+(x+4)(x+12)=(x+8)(x)+160 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+8)(x)+(x+4)(x+12)=(x+8)(x)+160 equation:



(x+8)(x)+(x+4)(x+12)=(x+8)(x)+160
We move all terms to the left:
(x+8)(x)+(x+4)(x+12)-((x+8)(x)+160)=0
We multiply parentheses
x^2+8x+(x+4)(x+12)-((x+8)x+160)=0
We multiply parentheses ..
x^2+(+x^2+12x+4x+48)+8x-((x+8)x+160)=0
We calculate terms in parentheses: -((x+8)x+160), so:
(x+8)x+160
We multiply parentheses
x^2+8x+160
Back to the equation:
-(x^2+8x+160)
We get rid of parentheses
x^2+x^2-x^2+12x+4x+8x-8x+48-160=0
We add all the numbers together, and all the variables
x^2+16x-112=0
a = 1; b = 16; c = -112;
Δ = b2-4ac
Δ = 162-4·1·(-112)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{11}}{2*1}=\frac{-16-8\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{11}}{2*1}=\frac{-16+8\sqrt{11}}{2} $

See similar equations:

| 8x=1331/x^2 | | N+3n+2=5n+-2 | | 10+q-3=6•5 | | -5=w+7 | | -7+v+15=12 | | 15x-6=x+12 | | n/25+452=438 | | 3+8+c=50 | | 19=y/3-2 | | n25+ 452= 438 | | 6y-91=257 | | 257=6y–91 | | Y=1.8x-3.8 | | 25-6z=241 | | 16=8+4w | | 65+18y=-763 | | 65–-18y=-763 | | 5-4x=10+3x | | 17x8=22x-7 | | -17.5h-1.31=-18.7h-12.95 | | /29-7(4-3x)=4x+5(x-7) | | 14x+8x=4 | | -16+10j=-1+15j | | 10z-2=-10z+19z-18 | | 12=-10p-28 | | 56=7c | | (5z+4)(6-z)=0 | | n=2(-4) | | 7^-x+6=5^-2x | | n=2(14) | | 16+4r=8r-6r-20 | | (5/2x)=(2/x)-(1/12) |

Equations solver categories