(x+8)(x-2)=52+(x-4)2

Simple and best practice solution for (x+8)(x-2)=52+(x-4)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+8)(x-2)=52+(x-4)2 equation:



(x+8)(x-2)=52+(x-4)2
We move all terms to the left:
(x+8)(x-2)-(52+(x-4)2)=0
We multiply parentheses ..
(+x^2-2x+8x-16)-(52+(x-4)2)=0
We calculate terms in parentheses: -(52+(x-4)2), so:
52+(x-4)2
determiningTheFunctionDomain (x-4)2+52
We multiply parentheses
2x-8+52
We add all the numbers together, and all the variables
2x+44
Back to the equation:
-(2x+44)
We get rid of parentheses
x^2-2x+8x-2x-16-44=0
We add all the numbers together, and all the variables
x^2+4x-60=0
a = 1; b = 4; c = -60;
Δ = b2-4ac
Δ = 42-4·1·(-60)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*1}=\frac{-20}{2} =-10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*1}=\frac{12}{2} =6 $

See similar equations:

| 7x-4x-6=10+2 | | 5x+3+8x-4=180 | | 8=4(p-1 | | 2(x^2-10)=x^2+8x | | 5+4(p-2)=25 | | x•4=36 | | 9-3(m+2)=36 | | 18-6x=13+9 | | 4(2x+9)+7x=-24 | | y×6=42 | | 10x+10=2x+50 | | 7+(-5)=3t+11 | | 2(x-4)+5=8(x+7) | | 18t=-36 | | 3(x−4)=5(x+6) | | 4-3(h-4)=-9 | | 5x–3=7 | | X²+2x-168=0 | | 2−(3x+7)=−x+19 | | (2X-1)(2x+1)=-5 | | 2m+16=20 | | 35=2b-5b | | 435.75=x^2+50x | | .3a+4=2a+15 | | 5(x-2)-2=3x+4+x | | 3/11b=5=5 | | 5(x-2)-2=3x+x | | 8x+1=23+4x | | 5x-4=31=5.4 | | x^2-60=21 | | 7x+6x+5-3=3x+x-7 | | 16=a+3 |

Equations solver categories