If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+8)2x=90
We move all terms to the left:
(x+8)2x-(90)=0
We multiply parentheses
2x^2+16x-90=0
a = 2; b = 16; c = -90;
Δ = b2-4ac
Δ = 162-4·2·(-90)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{61}}{2*2}=\frac{-16-4\sqrt{61}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{61}}{2*2}=\frac{-16+4\sqrt{61}}{4} $
| Y-(-275)=100(x-(-5)) | | 19-2v=15 | | 2(3-2(x+1))=3x+2(x-(3+2x)) | | 9-5t=-6-9t-9 | | 11x-(x+5)=0 | | 10+7b=-6+10b-5 | | 4x+65=9 | | k2-10k-56=0 | | 9(w-7)=4w-13 | | 4500=10x+.75 | | 2.4*x=10 | | -9-9u=-7u+9 | | 4500=10x^2+.75x | | -h=-8-2h | | 2a=345-(a-15) | | 2s+9=-7-6s | | y/8=7/3 | | 6x+20=400 | | -4(-5y+3)-y=3(y-7)-3 | | 5-9m=-10m | | -3c=7c+10 | | 2f+9=5f−21 | | 3.6=3.2*x | | -6k-8=-4k | | b=2(3)-21 | | 5k+-2k=16-7 | | 19=4t+3 | | 5=f/3+1 | | E=7^2x7^50+49+42(7^60/7^7) | | 3(y+5)-2y=12 | | P=70n-1000 | | 13/40=m/1000 |