If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+9)(x+3)/(x-7)(x+1)=4
We move all terms to the left:
(x+9)(x+3)/(x-7)(x+1)-(4)=0
Domain of the equation: (x-7)(x+1)!=0We multiply parentheses ..
We move all terms containing x to the left, all other terms to the right
x-7)(x!=-1
x∈R
(+x^2+3x+9x+27)/(x-7)(x+1)-4=0
We multiply all the terms by the denominator
(+x^2+3x+9x+27)-4*(x-7)(x+1)=0
We get rid of parentheses
x^2+3x+9x-4*(x-7)(x+1)+27=0
We multiply parentheses ..
x^2-4*(+x^2+x-7x-7)+3x+9x+27=0
We add all the numbers together, and all the variables
x^2-4*(+x^2+x-7x-7)+12x+27=0
We multiply parentheses
x^2-4x^2-4x+28x+12x+28+27=0
We add all the numbers together, and all the variables
-3x^2+36x+55=0
a = -3; b = 36; c = +55;
Δ = b2-4ac
Δ = 362-4·(-3)·55
Δ = 1956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1956}=\sqrt{4*489}=\sqrt{4}*\sqrt{489}=2\sqrt{489}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-2\sqrt{489}}{2*-3}=\frac{-36-2\sqrt{489}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+2\sqrt{489}}{2*-3}=\frac{-36+2\sqrt{489}}{-6} $
| –144=–18x | | 1000x=1000+1000x | | n=-4(-7n+6)-3 | | (18x-9)+(4x+13=180 | | 4(r+20)=1/2(20r+400) | | 2(g+-2)-1=1 | | 18x-9=4x+13=180 | | 101=-8n+5(1+4n) | | 8(p–7)=75 | | a/0.005=140 | | 101=-8n+5(1+4n | | 14+x=2x+9 | | 120=2^x | | 5푡2–20t+20=0 | | 3(x+1)-5=-2x-12 | | 3n^2+147=0 | | x^2+16x=22 | | 2x+60(5)=2400 | | 6(v+4)=-8(v-3) | | 0.05x+50=150 | | .10(x+80)+0.20x=8+0.30x | | 7p=8p-p | | 7x+63=180 | | h+1/4=5/3 | | -5(7a+2)=130 | | 12m=6m+3 | | 3/4=7/t | | 10/12=n54 | | −4/5a=-6 | | x/2+14=0 | | 2,5x-13=2 | | 10x-8x-4=-12 |