If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x + 9)(x + 3) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) Reorder the terms: (9 + x)(x + 3) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) Reorder the terms: (9 + x)(3 + x) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) Multiply (9 + x) * (3 + x) (9(3 + x) + x(3 + x)) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) ((3 * 9 + x * 9) + x(3 + x)) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) ((27 + 9x) + x(3 + x)) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) (27 + 9x + (3 * x + x * x)) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) (27 + 9x + (3x + x2)) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) Combine like terms: 9x + 3x = 12x (27 + 12x + x2) = 2(x + 6)(x + 3) + -1(x + 9)(x + 3) Reorder the terms: 27 + 12x + x2 = 2(6 + x)(x + 3) + -1(x + 9)(x + 3) Reorder the terms: 27 + 12x + x2 = 2(6 + x)(3 + x) + -1(x + 9)(x + 3) Multiply (6 + x) * (3 + x) 27 + 12x + x2 = 2(6(3 + x) + x(3 + x)) + -1(x + 9)(x + 3) 27 + 12x + x2 = 2((3 * 6 + x * 6) + x(3 + x)) + -1(x + 9)(x + 3) 27 + 12x + x2 = 2((18 + 6x) + x(3 + x)) + -1(x + 9)(x + 3) 27 + 12x + x2 = 2(18 + 6x + (3 * x + x * x)) + -1(x + 9)(x + 3) 27 + 12x + x2 = 2(18 + 6x + (3x + x2)) + -1(x + 9)(x + 3) Combine like terms: 6x + 3x = 9x 27 + 12x + x2 = 2(18 + 9x + x2) + -1(x + 9)(x + 3) 27 + 12x + x2 = (18 * 2 + 9x * 2 + x2 * 2) + -1(x + 9)(x + 3) 27 + 12x + x2 = (36 + 18x + 2x2) + -1(x + 9)(x + 3) Reorder the terms: 27 + 12x + x2 = 36 + 18x + 2x2 + -1(9 + x)(x + 3) Reorder the terms: 27 + 12x + x2 = 36 + 18x + 2x2 + -1(9 + x)(3 + x) Multiply (9 + x) * (3 + x) 27 + 12x + x2 = 36 + 18x + 2x2 + -1(9(3 + x) + x(3 + x)) 27 + 12x + x2 = 36 + 18x + 2x2 + -1((3 * 9 + x * 9) + x(3 + x)) 27 + 12x + x2 = 36 + 18x + 2x2 + -1((27 + 9x) + x(3 + x)) 27 + 12x + x2 = 36 + 18x + 2x2 + -1(27 + 9x + (3 * x + x * x)) 27 + 12x + x2 = 36 + 18x + 2x2 + -1(27 + 9x + (3x + x2)) Combine like terms: 9x + 3x = 12x 27 + 12x + x2 = 36 + 18x + 2x2 + -1(27 + 12x + x2) 27 + 12x + x2 = 36 + 18x + 2x2 + (27 * -1 + 12x * -1 + x2 * -1) 27 + 12x + x2 = 36 + 18x + 2x2 + (-27 + -12x + -1x2) Reorder the terms: 27 + 12x + x2 = 36 + -27 + 18x + -12x + 2x2 + -1x2 Combine like terms: 36 + -27 = 9 27 + 12x + x2 = 9 + 18x + -12x + 2x2 + -1x2 Combine like terms: 18x + -12x = 6x 27 + 12x + x2 = 9 + 6x + 2x2 + -1x2 Combine like terms: 2x2 + -1x2 = 1x2 27 + 12x + x2 = 9 + 6x + 1x2 Solving 27 + 12x + x2 = 9 + 6x + 1x2 Solving for variable 'x'. Reorder the terms: 27 + -9 + 12x + -6x + x2 + -1x2 = 9 + 6x + 1x2 + -9 + -6x + -1x2 Combine like terms: 27 + -9 = 18 18 + 12x + -6x + x2 + -1x2 = 9 + 6x + 1x2 + -9 + -6x + -1x2 Combine like terms: 12x + -6x = 6x 18 + 6x + x2 + -1x2 = 9 + 6x + 1x2 + -9 + -6x + -1x2 Combine like terms: x2 + -1x2 = 0 18 + 6x + 0 = 9 + 6x + 1x2 + -9 + -6x + -1x2 18 + 6x = 9 + 6x + 1x2 + -9 + -6x + -1x2 Reorder the terms: 18 + 6x = 9 + -9 + 6x + -6x + 1x2 + -1x2 Combine like terms: 9 + -9 = 0 18 + 6x = 0 + 6x + -6x + 1x2 + -1x2 18 + 6x = 6x + -6x + 1x2 + -1x2 Combine like terms: 6x + -6x = 0 18 + 6x = 0 + 1x2 + -1x2 18 + 6x = 1x2 + -1x2 Combine like terms: 1x2 + -1x2 = 0 18 + 6x = 0 Factor out the Greatest Common Factor (GCF), '6'. 6(3 + x) = 0 Ignore the factor 6.Subproblem 1
Set the factor '(3 + x)' equal to zero and attempt to solve: Simplifying 3 + x = 0 Solving 3 + x = 0 Move all terms containing x to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + -3 + x = 0 + -3 Combine like terms: 3 + -3 = 0 0 + x = 0 + -3 x = 0 + -3 Combine like terms: 0 + -3 = -3 x = -3 Simplifying x = -3Solution
x = {-3}
| R=d/2 | | (8x^3-6x)/2x | | .75x=2x-5 | | 12x+19=-5 | | x-(9/7x)=(-2/7) | | -83.5x-4.5x=4 | | 3456%+12356788642124578= | | (4b+5)(3b-1)=(6b+1)(2b+1) | | 2x+11=43 | | Log(x)+log(x-4)=log(3x) | | 8(x-1)(x-2)=4(x^2-4) | | 60=-4+5(-3x-7) | | x+3/x-10=12/5 | | 6x-8+2x-5=72x | | ,2x+6=3 | | ((x^2)+4)/((x^2)-4x-12) | | 1/5+5/6 | | 4xy=80 | | 3(X-2)/4=2X+3/5 | | 7n-4=59 | | -5x-18=-48 | | 12x-6=5x^2+7x-6 | | 5.8x+3.7=29.0 | | 4(y)-5=11 | | 59=9/5c+32 | | x-(x-y)= | | 13+5x-10=21-x | | -28x+(-28y)=-84 | | 11x-7+6=2 | | 565+x/5=148 | | 5d-4=11 | | 5d-4=11 |