(x+9)(x-1)=(2x+1)(x-1)

Simple and best practice solution for (x+9)(x-1)=(2x+1)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+9)(x-1)=(2x+1)(x-1) equation:



(x+9)(x-1)=(2x+1)(x-1)
We move all terms to the left:
(x+9)(x-1)-((2x+1)(x-1))=0
We multiply parentheses ..
(+x^2-1x+9x-9)-((2x+1)(x-1))=0
We calculate terms in parentheses: -((2x+1)(x-1)), so:
(2x+1)(x-1)
We multiply parentheses ..
(+2x^2-2x+x-1)
We get rid of parentheses
2x^2-2x+x-1
We add all the numbers together, and all the variables
2x^2-1x-1
Back to the equation:
-(2x^2-1x-1)
We get rid of parentheses
x^2-2x^2-1x+9x+1x-9+1=0
We add all the numbers together, and all the variables
-1x^2+9x-8=0
a = -1; b = 9; c = -8;
Δ = b2-4ac
Δ = 92-4·(-1)·(-8)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7}{2*-1}=\frac{-16}{-2} =+8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7}{2*-1}=\frac{-2}{-2} =1 $

See similar equations:

| 4(x+2)+2x+1=1+2x | | 3(n-5)=21) | | 7+2(3w-2)=-2(2w-6)+4w | | -3x-x-15=15 | | n/7-12=16 | | 6c+4=20-2c | | 2x-1/5=1- | | x-4=-9=x | | 5/(d+(-2))=14 | | 10-2y=5-50 | | -7x-27=-4(x+9) | | 19-2b=3 | | 6x^2+6x+11=0 | | -4-2x+3x=3 | | -7(8p-6)=-12-2p | | y=5+10*0 | | 5/d+-2=14 | | 4u–2=–6u+28 | | u/8=-8 | | z/5+3=-3 | | 0.2x+0.3(10-x)=2.5 | | -3h=96-5+ | | 10=-8x+6(x+3) | | -5/3=-1/4v+1/2 | | (3x-2)^2-4=0 | | -7(x+5)=-6-2x | | 5/(d+2)=14 | | -3h=96-5h | | 3x+2x-19=11 | | x^2+10x+25=-18 | | -3h=96=5h | | 6x-4/5=-62/15 |

Equations solver categories