(x+9)=(6x2-3x-3)

Simple and best practice solution for (x+9)=(6x2-3x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+9)=(6x2-3x-3) equation:



(x+9)=(6x^2-3x-3)
We move all terms to the left:
(x+9)-((6x^2-3x-3))=0
We get rid of parentheses
x-((6x^2-3x-3))+9=0
We calculate terms in parentheses: -((6x^2-3x-3)), so:
(6x^2-3x-3)
We get rid of parentheses
6x^2-3x-3
Back to the equation:
-(6x^2-3x-3)
We get rid of parentheses
-6x^2+x+3x+3+9=0
We add all the numbers together, and all the variables
-6x^2+4x+12=0
a = -6; b = 4; c = +12;
Δ = b2-4ac
Δ = 42-4·(-6)·12
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{19}}{2*-6}=\frac{-4-4\sqrt{19}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{19}}{2*-6}=\frac{-4+4\sqrt{19}}{-12} $

See similar equations:

| 235+0.02x=65+0.07x | | 0=5x^2+9x-99 | | 5000=x+.0765x | | 5+10(n-4)=-73-(2-2n) | | 5k–7=–7 | | 9u-15=4u | | 77+1/5g=95 | | m+9/15=0 | | 6x-28=4x-6 | | 20±7x=4-x | | 47=-y/7 | | -2x+8=2x-12 | | 5^x-4=135 | | 1=x+.0765x | | 5x+10x-4x=8x+7x-32 | | 2x-4-12x=124 | | x^2+4x-297=0 | | 8d-7d=19 | | 8x+6=2(x+3) | | -16+4x=-32+4x | | w=46-6w | | 25,000-8x=0 | | 6v=4v+10 | | 3v-2v=11 | | x-2​(x-4​)=-6+5x-1 | | 12x-5=12x+5 | | 40,000-5x=0 | | 10^2x=150 | | 65=4y+9 | | 6+5=v | | -3x=+7x=-12 | | -3x=+7=-12 |

Equations solver categories