If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+9)x=256
We move all terms to the left:
(x+9)x-(256)=0
We multiply parentheses
x^2+9x-256=0
a = 1; b = 9; c = -256;
Δ = b2-4ac
Δ = 92-4·1·(-256)
Δ = 1105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{1105}}{2*1}=\frac{-9-\sqrt{1105}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{1105}}{2*1}=\frac{-9+\sqrt{1105}}{2} $
| -100+33/(1+r)(r)=0 | | 9q2-5q=-4 | | 7x+35=-35 | | (5-v)(5v+9)=0 | | Y=2+x/0.5 | | x/3+13=21 | | 1/(1+r)*(33/r)-100=0 | | 5^(x-2)=12 | | 6s2+7=0 | | 1/(1+r)(33/r)-100=0 | | (x/5)+11=-9 | | 4s+8=5+4s | | p2+2p+1=0 | | 2n=15-7 | | v2+9=-6v | | x-4+6x=10 | | 40=x/3+8 | | 7p2=4p-6 | | (u-5)^2=2u^2-4u+30 | | 6v2+1=0 | | 3n=20-5 | | 6u2+4=0 | | r-5=3-7r | | -3(-4x-5)=15 | | 6u+4=0 | | x–7-12=0 | | 3r2-4r-6=0 | | 1-3x-5=-16 | | |x–7|-12=0 | | Y+z=180-50 | | y2+4y+4=0 | | 6-11x=(2x+3) |