(x+y+3)(x+y-4)=0

Simple and best practice solution for (x+y+3)(x+y-4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+y+3)(x+y-4)=0 equation:


Simplifying
(x + y + 3)(x + y + -4) = 0

Reorder the terms:
(3 + x + y)(x + y + -4) = 0

Reorder the terms:
(3 + x + y)(-4 + x + y) = 0

Multiply (3 + x + y) * (-4 + x + y)
(3(-4 + x + y) + x(-4 + x + y) + y(-4 + x + y)) = 0
((-4 * 3 + x * 3 + y * 3) + x(-4 + x + y) + y(-4 + x + y)) = 0
((-12 + 3x + 3y) + x(-4 + x + y) + y(-4 + x + y)) = 0
(-12 + 3x + 3y + (-4 * x + x * x + y * x) + y(-4 + x + y)) = 0

Reorder the terms:
(-12 + 3x + 3y + (-4x + xy + x2) + y(-4 + x + y)) = 0
(-12 + 3x + 3y + (-4x + xy + x2) + y(-4 + x + y)) = 0
(-12 + 3x + 3y + -4x + xy + x2 + (-4 * y + x * y + y * y)) = 0

Reorder the terms:
(-12 + 3x + 3y + -4x + xy + x2 + (xy + -4y + y2)) = 0
(-12 + 3x + 3y + -4x + xy + x2 + (xy + -4y + y2)) = 0

Reorder the terms:
(-12 + 3x + -4x + xy + xy + x2 + 3y + -4y + y2) = 0

Combine like terms: 3x + -4x = -1x
(-12 + -1x + xy + xy + x2 + 3y + -4y + y2) = 0

Combine like terms: xy + xy = 2xy
(-12 + -1x + 2xy + x2 + 3y + -4y + y2) = 0

Combine like terms: 3y + -4y = -1y
(-12 + -1x + 2xy + x2 + -1y + y2) = 0

Solving
-12 + -1x + 2xy + x2 + -1y + y2 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| v+742=750 | | -8=v/19 | | v+42=99 | | 3m-12=18 | | 80=f+18 | | 5x+3=4x-2 | | -26z=832 | | -22w=-110 | | 4x+7y=21 | | 25x+8-28x=4-8 | | -6t=96 | | 80x^2-36x-80=0 | | -5p+10=75 | | 2x-8+x-50+13x+30=180 | | -8(-8+3v)=-29+7v | | 7x+4=36x+19 | | 3(x-5)=5(x-3) | | x-61=73.5 | | 7k+42=21 | | j-55=3 | | x^2+91x=0 | | 4+x=-5 | | 2q+3q+6q-6= | | 6d+8=50 | | v+6=50 | | r/6=7 | | -8-7(-p-7)=-23-p | | g+14=70 | | n-9=-16 | | 3x^3+375=0 | | 7(x-1)=5(x+1) | | 13x-126=6x-7 |

Equations solver categories