If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x + y + -1z)(x + y + z) = 0 Multiply (x + y + -1z) * (x + y + z) (x(x + y + z) + y(x + y + z) + -1z * (x + y + z)) = 0 ((x * x + y * x + z * x) + y(x + y + z) + -1z * (x + y + z)) = 0 Reorder the terms: ((xy + xz + x2) + y(x + y + z) + -1z * (x + y + z)) = 0 ((xy + xz + x2) + y(x + y + z) + -1z * (x + y + z)) = 0 (xy + xz + x2 + (x * y + y * y + z * y) + -1z * (x + y + z)) = 0 Reorder the terms: (xy + xz + x2 + (xy + yz + y2) + -1z * (x + y + z)) = 0 (xy + xz + x2 + (xy + yz + y2) + -1z * (x + y + z)) = 0 (xy + xz + x2 + xy + yz + y2 + (x * -1z + y * -1z + z * -1z)) = 0 (xy + xz + x2 + xy + yz + y2 + (-1xz + -1yz + -1z2)) = 0 Reorder the terms: (xy + xy + xz + -1xz + x2 + yz + -1yz + y2 + -1z2) = 0 Combine like terms: xy + xy = 2xy (2xy + xz + -1xz + x2 + yz + -1yz + y2 + -1z2) = 0 Combine like terms: xz + -1xz = 0 (2xy + 0 + x2 + yz + -1yz + y2 + -1z2) = 0 (2xy + x2 + yz + -1yz + y2 + -1z2) = 0 Combine like terms: yz + -1yz = 0 (2xy + x2 + 0 + y2 + -1z2) = 0 (2xy + x2 + y2 + -1z2) = 0 Solving 2xy + x2 + y2 + -1z2 = 0 Solving for variable 'x'. The solution to this equation could not be determined.
| 5y+3=y+1 | | An=(2n^2) | | 5x^3-15x^2+4x-12=0 | | x+(x-2)+2x=82 | | 43+26k=927 | | X^2-12-27=0 | | 8a+5=10 | | x-4=-5x-28 | | 740=-20(b+794) | | 5.9+x=0.8 | | 4y-3=2y+21 | | 49-2x+8= | | -5(0.1x+0.5)-0.8=-0.3 | | -4g=-36 | | n-15=-21 | | 3(2b-4)+14=26 | | 42=12+5(x-1) | | 192=72x^2+24X | | 6(x+3)-75=5(x-10) | | 5-5x=-8x+14 | | (12-15)3= | | 192=72x^2+24 | | 2x+3(x-4)=(x-3) | | A+BX=CX+D | | 4(Z+7)-6=2 | | 29-(-q)=86 | | xsquared+8x-5=15 | | g-13.37=-23 | | (0.5)(y)=3 | | 5y=175 | | 3(x-1)+60=8(x+4) | | g(-3)=2x-5 |