If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x + -1(3 + 2i))(x + (3 + 2i)) = 0 (x + (3 * -1 + 2i * -1))(x + (3 + 2i)) = 0 (x + (-3 + -2i))(x + (3 + 2i)) = 0 Reorder the terms: (-3 + -2i + x)(x + (3 + 2i)) = 0 Remove parenthesis around (3 + 2i) (-3 + -2i + x)(x + 3 + 2i) = 0 Reorder the terms: (-3 + -2i + x)(3 + 2i + x) = 0 Multiply (-3 + -2i + x) * (3 + 2i + x) (-3(3 + 2i + x) + -2i * (3 + 2i + x) + x(3 + 2i + x)) = 0 ((3 * -3 + 2i * -3 + x * -3) + -2i * (3 + 2i + x) + x(3 + 2i + x)) = 0 ((-9 + -6i + -3x) + -2i * (3 + 2i + x) + x(3 + 2i + x)) = 0 (-9 + -6i + -3x + (3 * -2i + 2i * -2i + x * -2i) + x(3 + 2i + x)) = 0 Reorder the terms: (-9 + -6i + -3x + (-6i + -2ix + -4i2) + x(3 + 2i + x)) = 0 (-9 + -6i + -3x + (-6i + -2ix + -4i2) + x(3 + 2i + x)) = 0 (-9 + -6i + -3x + -6i + -2ix + -4i2 + (3 * x + 2i * x + x * x)) = 0 Reorder the terms: (-9 + -6i + -3x + -6i + -2ix + -4i2 + (2ix + 3x + x2)) = 0 (-9 + -6i + -3x + -6i + -2ix + -4i2 + (2ix + 3x + x2)) = 0 Reorder the terms: (-9 + -6i + -6i + -2ix + 2ix + -4i2 + -3x + 3x + x2) = 0 Combine like terms: -6i + -6i = -12i (-9 + -12i + -2ix + 2ix + -4i2 + -3x + 3x + x2) = 0 Combine like terms: -2ix + 2ix = 0 (-9 + -12i + 0 + -4i2 + -3x + 3x + x2) = 0 (-9 + -12i + -4i2 + -3x + 3x + x2) = 0 Combine like terms: -3x + 3x = 0 (-9 + -12i + -4i2 + 0 + x2) = 0 (-9 + -12i + -4i2 + x2) = 0 Solving -9 + -12i + -4i2 + x2 = 0 Solving for variable 'i'. The solution to this equation could not be determined.
| 25a^2-40a+16=45 | | 1.5x=1.3x+6 | | 500+30w=460+2w | | 7.6x-3.7x=-117 | | 4x^2-16x-38=0 | | 0=x^2+9x+210 | | 8y+1=7y-1 | | 1x+12+2x=20+3x-8 | | 5.3-3.7=13.81 | | 4x=39.3 | | -20=-4(b+1)+16 | | 4y-2y+10=24 | | 8+4x=22-3x | | 6z-2=7z-2z | | (1.5x)=(1.3x)+5 | | m/10+2=4 | | 3x+27x=0 | | 4d-(2+5d)=-7 | | 4y+10=2y+24 | | -4n=72 | | 4(7-4x)=-148 | | 7r-15=-50+2r | | -20a=220 | | 40=0.04v^2+1.1v | | 18-3y=57 | | -2(5x+9)=-48 | | m-2(m+3)=1-(m+7) | | 4y+2y+10=34 | | 2f+8-t=-3 | | 6z-2=7z-2 | | x-.08=8.22 | | 2(5x-1)-2x=6 |