If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x + -1(3 + -2i))(x + (3 + -2i)) = 0 (x + (3 * -1 + -2i * -1))(x + (3 + -2i)) = 0 (x + (-3 + 2i))(x + (3 + -2i)) = 0 Reorder the terms: (-3 + 2i + x)(x + (3 + -2i)) = 0 Remove parenthesis around (3 + -2i) (-3 + 2i + x)(x + 3 + -2i) = 0 Reorder the terms: (-3 + 2i + x)(3 + -2i + x) = 0 Multiply (-3 + 2i + x) * (3 + -2i + x) (-3(3 + -2i + x) + 2i * (3 + -2i + x) + x(3 + -2i + x)) = 0 ((3 * -3 + -2i * -3 + x * -3) + 2i * (3 + -2i + x) + x(3 + -2i + x)) = 0 ((-9 + 6i + -3x) + 2i * (3 + -2i + x) + x(3 + -2i + x)) = 0 (-9 + 6i + -3x + (3 * 2i + -2i * 2i + x * 2i) + x(3 + -2i + x)) = 0 Reorder the terms: (-9 + 6i + -3x + (6i + 2ix + -4i2) + x(3 + -2i + x)) = 0 (-9 + 6i + -3x + (6i + 2ix + -4i2) + x(3 + -2i + x)) = 0 (-9 + 6i + -3x + 6i + 2ix + -4i2 + (3 * x + -2i * x + x * x)) = 0 Reorder the terms: (-9 + 6i + -3x + 6i + 2ix + -4i2 + (-2ix + 3x + x2)) = 0 (-9 + 6i + -3x + 6i + 2ix + -4i2 + (-2ix + 3x + x2)) = 0 Reorder the terms: (-9 + 6i + 6i + 2ix + -2ix + -4i2 + -3x + 3x + x2) = 0 Combine like terms: 6i + 6i = 12i (-9 + 12i + 2ix + -2ix + -4i2 + -3x + 3x + x2) = 0 Combine like terms: 2ix + -2ix = 0 (-9 + 12i + 0 + -4i2 + -3x + 3x + x2) = 0 (-9 + 12i + -4i2 + -3x + 3x + x2) = 0 Combine like terms: -3x + 3x = 0 (-9 + 12i + -4i2 + 0 + x2) = 0 (-9 + 12i + -4i2 + x2) = 0 Solving -9 + 12i + -4i2 + x2 = 0 Solving for variable 'i'. The solution to this equation could not be determined.
| 12k=1.44 | | 4y^4+1-4y^2=0 | | -2(m+3)=-4/5 | | 11k=1.44 | | x^2=35+2x | | 2(2x-8)+3=15 | | -2j=-j+8 | | 3(n-8)+6(n-12)=12 | | (5r+7)(5r-7)= | | -3(c-d)+(c-d)-6(c-d)= | | 11x-120=4x-8 | | -8x^3+18x^2+4x=0 | | 3(7-x)=5x+37 | | (7n-6)(7n-6)= | | 2x+6=26+12x | | -7x-4=37 | | 7x^2-x+10=0 | | 20.70*1150= | | y=25-2x^2 | | (6d-5)(4d-7)= | | 4a+6b=86 | | 32-6x=12-10x | | 5+x=3(x-7)+6 | | 5x+15y=55 | | (4x+1)(6x+3)= | | 5-2x=3+x-4-3x | | 2x+11=-5-2x | | 5q^2-2q=4q^2-4q+15 | | 3(p^2-18p+81)=81 | | -4(x+5)=10 | | 24+8=-2x+10x | | 4(x+7)=23 |