(x-1)(x+2)-(2x-3)(x-4)-x+4=0

Simple and best practice solution for (x-1)(x+2)-(2x-3)(x-4)-x+4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)(x+2)-(2x-3)(x-4)-x+4=0 equation:



(x-1)(x+2)-(2x-3)(x-4)-x+4=0
We add all the numbers together, and all the variables
-1x+(x-1)(x+2)-(2x-3)(x-4)+4=0
We multiply parentheses ..
(+x^2+2x-1x-2)-1x-(2x-3)(x-4)+4=0
We get rid of parentheses
x^2+2x-1x-1x-(2x-3)(x-4)-2+4=0
We multiply parentheses ..
x^2-(+2x^2-8x-3x+12)+2x-1x-1x-2+4=0
We add all the numbers together, and all the variables
x^2-(+2x^2-8x-3x+12)+2=0
We get rid of parentheses
x^2-2x^2+8x+3x-12+2=0
We add all the numbers together, and all the variables
-1x^2+11x-10=0
a = -1; b = 11; c = -10;
Δ = b2-4ac
Δ = 112-4·(-1)·(-10)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-9}{2*-1}=\frac{-20}{-2} =+10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+9}{2*-1}=\frac{-2}{-2} =1 $

See similar equations:

| 8-x=124 | | 14x2+10=150;5 | | 7x-56=56 | | 1−x2=4 | | 42/14=26/x | | 6x+12x=4x | | 2-(1200/x^2)=0 | | x−1=6x−9 | | 15+34x=20-x | | 2-1200/x^2=0 | | 15=34x=20-x | | 3v-6=9(v-6) | | X2+y2+8y=0 | | 2x-9=2x+7 | | 25=2a-9 | | 2(x+1)=x3(x-2) | | 4x+34=5x | | -81x^2+x+936=0 | | 1.4t^2-9.8t+4.9=0 | | 1000000+10000000x=0.01(2.0)^(x) | | 1/3(6x+9)=x+5 | | -1×14x=12x+17 | | 1.4t^2-9.8t-4.9=0 | | 7x=4×+27 | | 100+0.2*(x−100)=250 | | 4=c+12/5.7 | | (6x^2/6x+6)+(5x/5x+5)-6=0 | | 15(x+1)=7(x+9)=4× | | (3x-14)+70=180 | | (6)(x/x+1)^2+(5)(x/x+1)-6=0 | | a`2=25 | | 14=2(3x+1) |

Equations solver categories