(x-1)(x+2)=(2x-3)(x+2)

Simple and best practice solution for (x-1)(x+2)=(2x-3)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)(x+2)=(2x-3)(x+2) equation:



(x-1)(x+2)=(2x-3)(x+2)
We move all terms to the left:
(x-1)(x+2)-((2x-3)(x+2))=0
We multiply parentheses ..
(+x^2+2x-1x-2)-((2x-3)(x+2))=0
We calculate terms in parentheses: -((2x-3)(x+2)), so:
(2x-3)(x+2)
We multiply parentheses ..
(+2x^2+4x-3x-6)
We get rid of parentheses
2x^2+4x-3x-6
We add all the numbers together, and all the variables
2x^2+x-6
Back to the equation:
-(2x^2+x-6)
We get rid of parentheses
x^2-2x^2+2x-1x-x-2+6=0
We add all the numbers together, and all the variables
-1x^2+4=0
a = -1; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-1)·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*-1}=\frac{-4}{-2} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*-1}=\frac{4}{-2} =-2 $

See similar equations:

| X+1/x-2/3=1/2 | | 3x+1/2-4x-1/3=1 | | X+2÷5=x-4÷2 | | 10=20-2n | | X-3/2=4x+3/3 | | 144x-81=0 | | -0.4n+3.6=12.8 | | 3x+7x-10=7+10x-17 | | 4x+7=9+5 | | 2,5x=1000 | | 2x–4=7x+10 | | -7,x-2,8=-6,6-9x | | -40x^2+20x+20=0 | | 1/3y−12=38 | | 64/8=n/128 | | 6x-12=5+(2x-9) | | (5,-3)m=4 | | 2x+3=4(x-2)+8 | | -11=5(m-3) | | 3x–4=7x+4 | | x^2−24⋅x+135=0. | | 12,2x=148.84 | | (72+x)/2=85 | | (72+85)/2=x | | x=(72+85)/2 | | 360/n-1-360/n+1=6 | | 2b-5=23b=4 | | -4-n=13n=6 | | (88+x)/2=94 | | a+1/2=-1/4a=-3/4 | | (90+x)/2=95 | | (98+x)/2=98 |

Equations solver categories