If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-1)(x-2)-(x+2)(x-1)-3(x+1)(x-2)=0
We multiply parentheses ..
(+x^2-2x-1x+2)-(x+2)(x-1)-3(x+1)(x-2)=0
We get rid of parentheses
x^2-2x-1x-(x+2)(x-1)-3(x+1)(x-2)+2=0
We multiply parentheses ..
x^2-(+x^2-1x+2x-2)-2x-1x-3(x+1)(x-2)+2=0
We add all the numbers together, and all the variables
x^2-(+x^2-1x+2x-2)-3x-3(x+1)(x-2)+2=0
We get rid of parentheses
x^2-x^2+1x-2x-3x-3(x+1)(x-2)+2+2=0
We multiply parentheses ..
x^2-x^2-3(+x^2-2x+x-2)+1x-2x-3x+2+2=0
We add all the numbers together, and all the variables
-3(+x^2-2x+x-2)-4x+4=0
We multiply parentheses
-3x^2+6x-3x-4x+6+4=0
We add all the numbers together, and all the variables
-3x^2-1x+10=0
a = -3; b = -1; c = +10;
Δ = b2-4ac
Δ = -12-4·(-3)·10
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-11}{2*-3}=\frac{-10}{-6} =1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+11}{2*-3}=\frac{12}{-6} =-2 $
| 8(x-1)+7=4x+2-3(2-x) | | x+10-3x^2=0 | | 6=x-8.3 | | 2(x+7.00)=32.00 | | 2(x+$7.00)=$32.00 | | 6x+42x-16=180 | | 2C+15c+54=0 | | C2+15c+54=0 | | x+x²=20 | | 18=3/7u | | 0.25a-0.5=4.5 | | 2x=x(9.8) | | 5(c+1)/6=2c-3 | | 2x^2=9.8 | | 10y=9y-10 | | -8x+6+5x-1=3-14x-7x-10x | | 4/7r=32 | | 14x-25=180 | | -10+3v=v | | 3*(3x+9)=7x+13 | | 2x-3x+1+8x=2x+5-4x-3 | | 9a-4=3(3a+4) | | (17b-6)-4(4b+3)=-7 | | m2-8m-1008=0 | | 7(3x+2)-14=147 | | -9w=-w-48 | | t+19=21 | | 12.5=x*5 | | 5x−7≥=43 | | 4(4x-6)+4x=56 | | Y=-85+12x= | | (D^2-2D+10)y=0 |