(x-1)(x-2)=(7x-17)

Simple and best practice solution for (x-1)(x-2)=(7x-17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)(x-2)=(7x-17) equation:



(x-1)(x-2)=(7x-17)
We move all terms to the left:
(x-1)(x-2)-((7x-17))=0
We multiply parentheses ..
(+x^2-2x-1x+2)-((7x-17))=0
We calculate terms in parentheses: -((7x-17)), so:
(7x-17)
We get rid of parentheses
7x-17
Back to the equation:
-(7x-17)
We get rid of parentheses
x^2-2x-1x-7x+2+17=0
We add all the numbers together, and all the variables
x^2-10x+19=0
a = 1; b = -10; c = +19;
Δ = b2-4ac
Δ = -102-4·1·19
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{6}}{2*1}=\frac{10-2\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{6}}{2*1}=\frac{10+2\sqrt{6}}{2} $

See similar equations:

| |6a−5|=4a|6a−5|=4a. | | -5x-7=-2x+2 | | |6a−5|=4a|6a−5|=4a | | S(t)=5t+45 | | 5(3z-7z=4) | | 10x-36+4x+6=180 | | n^2-n-33=0 | | (4x+2)/3=(5x)/7 | | 7/2x+1/2x=7.5+5/2x | | -3(f-8)=39 | | 5.6=i+4.09 | | 3y/10-322=y/5+3 | | n-3=2n+14 | | 1/5x+3/2x=44/10 | | 12x-5x-20=-20 | | 9/18=5/x | | 7/2x+1/2x=71/2+5/2x | | 3x+11x=3+6+12x+3x | | 3+5x-7x=-11 | | 6y-2=26 | | 5x+13x=-2 | | 3x(3x+15)-(10+x)=35 | | 0.5x+4=2x+4 | | D(t)=-38t+220 | | 9x+x-132=188 | | 2x+9x+20=2 | | -28-x=-6x+7 | | Y=12x+165 | | 21-3(2-x)=-12 | | 9(x+2)+3=4x+5(5+x) | | 4=(x+3) | | Y/2+1/9=y/9-1/9 |

Equations solver categories