(x-10)(2x+2)+(x-10)(x+1)=0

Simple and best practice solution for (x-10)(2x+2)+(x-10)(x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-10)(2x+2)+(x-10)(x+1)=0 equation:



(x-10)(2x+2)+(x-10)(x+1)=0
We multiply parentheses ..
(+2x^2+2x-20x-20)+(x-10)(x+1)=0
We get rid of parentheses
2x^2+2x-20x+(x-10)(x+1)-20=0
We multiply parentheses ..
2x^2+(+x^2+x-10x-10)+2x-20x-20=0
We add all the numbers together, and all the variables
2x^2+(+x^2+x-10x-10)-18x-20=0
We get rid of parentheses
2x^2+x^2+x-10x-18x-10-20=0
We add all the numbers together, and all the variables
3x^2-27x-30=0
a = 3; b = -27; c = -30;
Δ = b2-4ac
Δ = -272-4·3·(-30)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-33}{2*3}=\frac{-6}{6} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+33}{2*3}=\frac{60}{6} =10 $

See similar equations:

| 5a+3=8a-7 | | p/8=3 | | 4+26z=-29.8 | | 5x-5=6x-9 | | 3(x-1)=5(x+3)-5 | | 4r=4r+3 | | 5x-5=-6x-9 | | 30+3x=21 | | a-100=-16a | | a+34=80 | | 2x+7=8x-1 | | 5x-6=2x–3 | | 14u=8u+48 | | F(1)=2n+10 | | F(1)=2n+6 | | −4x−8=4x+8 | | 3p=-2p−10 | | 34-7x=4+2(x-3) | | 5-(2x)=13+x | | -6(9x+5)-3x+4x=-405+x | | x−3=x+3 | | 5-(2*x)=13 | | 4x+8-x=28 | | 8y+30=63 | | 8-2x=-12x | | 4x+5=23-2× | | 2t−5=(−10) | | 6(x-3)=5(2x+3)-15 | | (2x+59)+(x-19)+x=180 | | (a+3)=3(a+5) | | 3x+6-5x+4=9x+2 | | 8a^2=76 |

Equations solver categories