(x-10)+(x-20)+(1/3*x)=320

Simple and best practice solution for (x-10)+(x-20)+(1/3*x)=320 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-10)+(x-20)+(1/3*x)=320 equation:



(x-10)+(x-20)+(1/3x)=320
We move all terms to the left:
(x-10)+(x-20)+(1/3x)-(320)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(x-10)+(x-20)+(+1/3x)-320=0
We get rid of parentheses
x+x+1/3x-10-20-320=0
We multiply all the terms by the denominator
x*3x+x*3x-10*3x-20*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-30x-60x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $

See similar equations:

| 5+8k=5k-1 | | -4b+8b=0 | | -7+9p=110 | | (2/5)x+10=(7/10) | | 4x-6=6x+7 | | n-3+3n=47-n | | 44+19t+41=180 | | 260=42x-75 | | q=829-3q | | 5.75+0.75x=4.50+1x | | .7( | | 20x^2-35x=0 | | 6+5x+6x=50 | | 3(4x-1)=40 | | 4x()=104 | | -5m+-10=-25 | | .7( | | .7( | | 6=-z/2 | | 24x+4=47+12x+9 | | 40=16−8r | | 7w-6=2w+18+w | | -5m+-10=25 | | 5(1+a)-8(5a-4)=2 | | -9x-20=11x | | 8x-4=9x+15 | | 9x-358=27-78x | | (9x+4)=(2x+34+(5) | | 7-2g=-3g | | 2x+4+7x=31 | | 45+89+2p=180 | | 7x+57=35 |

Equations solver categories