If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-10)x=171
We move all terms to the left:
(x-10)x-(171)=0
We multiply parentheses
x^2-10x-171=0
a = 1; b = -10; c = -171;
Δ = b2-4ac
Δ = -102-4·1·(-171)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-28}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+28}{2*1}=\frac{38}{2} =19 $
| X,y=5,0 | | 20x+7=9x+95 | | 5(x-3)=7(2x+9) | | 8w+8=w-6 | | 9-2y=7-y | | 2y/5+3=7y/15+9 | | 9a+1=-71 | | 9a+1=71 | | 5(x=1)=5(4x-3) | | 4^(2x+1)=32^x | | 0=16t^2+750 | | 3x=3-x+2=x+5 | | (1/4)^x=64^3x-1 | | 0=(3x+15)/(4x-12) | | (x+4)^(2)=20 | | 4+x/2=16 | | 57=3u+15 | | 5x–9=3(x–2) | | 264=212-x | | 2/31x+8/31=4/31 | | 0.132=0.886*t+(1-0.886)*0.03 | | 0.132=0.886*(x+0.01)+(1-0.886)*0.01 | | 0.132=0.886*(t+0.01)+(1-0.886)*0.01 | | 0,75(2x+4)=x+19 | | 3-1/2v=10 | | 9+3/5z=12 | | 2/9w+9=10 | | 1/3x+8=+10 | | 4/7+y=-13/14 | | 41+5y-4=16y-12-4y | | 4x+6/3=4/6 | | -3=-2x-9 |