(x-17)(x+5)-(2x-3)(2x+3)=-67

Simple and best practice solution for (x-17)(x+5)-(2x-3)(2x+3)=-67 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-17)(x+5)-(2x-3)(2x+3)=-67 equation:



(x-17)(x+5)-(2x-3)(2x+3)=-67
We move all terms to the left:
(x-17)(x+5)-(2x-3)(2x+3)-(-67)=0
We add all the numbers together, and all the variables
(x-17)(x+5)-(2x-3)(2x+3)+67=0
We use the square of the difference formula
4x^2+(x-17)(x+5)+9+67=0
We multiply parentheses ..
4x^2+(+x^2+5x-17x-85)+9+67=0
We add all the numbers together, and all the variables
4x^2+(+x^2+5x-17x-85)+76=0
We get rid of parentheses
4x^2+x^2+5x-17x-85+76=0
We add all the numbers together, and all the variables
5x^2-12x-9=0
a = 5; b = -12; c = -9;
Δ = b2-4ac
Δ = -122-4·5·(-9)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-18}{2*5}=\frac{-6}{10} =-3/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+18}{2*5}=\frac{30}{10} =3 $

See similar equations:

| 9(x+5)+2=-6(x-5)-9 | | 3x-2=-x | | 3.5x=1.9 | | 3x²-11x-4=0 | | 5(6x+1)+12=3(-8+x)+2 | | 2.9x-0.8=1.2-2x | | -5p-4(5-3p)=2(p-5)-10 | | (x+2)(x-5)=(x+3)(x-4) | | 23y=4y-1 | | 4(x-1)=-3(x+2) | | 7x2−28=0 | | 5x+100=3x | | 4(x-4)=60 | | -2x+32=6x | | 3(x+2)=(10-x)+11 | | 3÷3y=4y-1 | | 3÷3y=4y | | 2/7z+18=8-3/7 | | 1.9x+4.8x=18 | | 9-2p=6 | | 7,8-0,15(0,4x-8)=0,5x+4,52 | | 3.12.25=0.5q+3.75 | | 3x+9=-2x+4 | | -2x+-10=6x-42 | | 4x^2-5=2x^2+13 | | |2x-1|+5=27 | | 2÷3y=4y-1 | | 21=x/6+3 | | z/3-2=11 | | x/4=7+3 | | 13y=-4y+306 | | 8.6x-1.9=116.96 |

Equations solver categories