(x-2)(x+3)+(x-2)(2x+1)+x2-4=0

Simple and best practice solution for (x-2)(x+3)+(x-2)(2x+1)+x2-4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)(x+3)+(x-2)(2x+1)+x2-4=0 equation:



(x-2)(x+3)+(x-2)(2x+1)+x2-4=0
We add all the numbers together, and all the variables
x^2+(x-2)(x+3)+(x-2)(2x+1)-4=0
We multiply parentheses ..
x^2+(+x^2+3x-2x-6)+(x-2)(2x+1)-4=0
We get rid of parentheses
x^2+x^2+3x-2x+(x-2)(2x+1)-6-4=0
We multiply parentheses ..
x^2+x^2+(+2x^2+x-4x-2)+3x-2x-6-4=0
We add all the numbers together, and all the variables
2x^2+(+2x^2+x-4x-2)+x-10=0
We get rid of parentheses
2x^2+2x^2+x-4x+x-2-10=0
We add all the numbers together, and all the variables
4x^2-2x-12=0
a = 4; b = -2; c = -12;
Δ = b2-4ac
Δ = -22-4·4·(-12)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-14}{2*4}=\frac{-12}{8} =-1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+14}{2*4}=\frac{16}{8} =2 $

See similar equations:

| 7x-5=-140 | | X+2y-84=0 | | -7a+4=-24 | | 6x-5=9x+13 | | -2+10a=78 | | 5x-2(×+1)=10 | | 7+r/2=12 | | 15=-3(9+p) | | 5-5n=5 | | -8-8(x+3)=-2(2x-4) | | 7(x+8)=3(4x-3) | | 64=-6(-3+5p)+8(p+3) | | -n+28=-6(7+6n) | | 5n+4=3(n-4) | | -93=-3(1-5v) | | -4-3(x+2)-3=-25 | | 1x+0=180 | | -15=2x-5x | | 3y+4-6y=-10+5 | | (3x+36)(2x+42)=1440 | | -5x+3+3x+5=0 | | 1/5y=2 | | (x+5)*3=(x-5)*3x | | 10x+1=50 | | 2t^2+5t+25=0 | | -1/5+b=2/3 | | 7y-4=6 | | 3z-4=26 | | 2x-6=-3x-12 | | 4x+17=778 | | 3x-5=12-3x | | 0.08x+0.09(x+2,000)=860 |

Equations solver categories