(x-2)(x+4)/x+10=0

Simple and best practice solution for (x-2)(x+4)/x+10=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)(x+4)/x+10=0 equation:



(x-2)(x+4)/x+10=0
Domain of the equation: x!=0
x∈R
We multiply parentheses ..
(+x^2+4x-2x-8)/x+10=0
We multiply all the terms by the denominator
(+x^2+4x-2x-8)+10*x=0
We add all the numbers together, and all the variables
(+x^2+4x-2x-8)+10x=0
We get rid of parentheses
x^2+4x-2x+10x-8=0
We add all the numbers together, and all the variables
x^2+12x-8=0
a = 1; b = 12; c = -8;
Δ = b2-4ac
Δ = 122-4·1·(-8)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{11}}{2*1}=\frac{-12-4\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{11}}{2*1}=\frac{-12+4\sqrt{11}}{2} $

See similar equations:

| (2x)(x+5)=90 | | 9^x−82.3^x+81=0 | | (2x)(5x)=90 | | 2.5=-2b+9.88 | | 3j-2=1.3 | | 7x-4=4(2x-1)-x | | 7+-2r=19 | | 9^(9x-2)=3^(x^2+31x+36) | | 3x-6=2(x-2)* | | 15(x-2)-21=-3(x+1)+6* | | 1.79769313486=23157e+309 | | 1/5(2-7k)=-2(4K+3) | | 40.2x–5)=12 | | 2(2x+7)=74 | | 40.2x–5)=12. | | 95,67Xb=102 | | -15+7n=20 | | n=45/7-3 | | 3x/4−6=9/4 | | 5^(-x)/2-3/2=x | | 5(^-x)7=2x+4 | | x*8/21=2/7 | | 7(7x-9)+2=49x-61 | | 7b​+23​=1 | | 15/30+x/40=83/100 | | 6x8+22=15+ | | -5x-11=2x+3 | | 15/30+x/40=(.83 | | 4q+9=6q−9 | | 5(x+4)/3=3x-2 | | 5-x/7=6 | | 4q−8=q−4+4q |

Equations solver categories