(x-2)*(x+4)=(X+3)+(X+6)+(X+4)

Simple and best practice solution for (x-2)*(x+4)=(X+3)+(X+6)+(X+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)*(x+4)=(X+3)+(X+6)+(X+4) equation:



(x-2)(x+4)=(x+3)+(x+6)+(x+4)
We move all terms to the left:
(x-2)(x+4)-((x+3)+(x+6)+(x+4))=0
We multiply parentheses ..
(+x^2+4x-2x-8)-((x+3)+(x+6)+(x+4))=0
We calculate terms in parentheses: -((x+3)+(x+6)+(x+4)), so:
(x+3)+(x+6)+(x+4)
We get rid of parentheses
x+x+x+3+6+4
We add all the numbers together, and all the variables
3x+13
Back to the equation:
-(3x+13)
We get rid of parentheses
x^2+4x-2x-3x-8-13=0
We add all the numbers together, and all the variables
x^2-1x-21=0
a = 1; b = -1; c = -21;
Δ = b2-4ac
Δ = -12-4·1·(-21)
Δ = 85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{85}}{2*1}=\frac{1-\sqrt{85}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{85}}{2*1}=\frac{1+\sqrt{85}}{2} $

See similar equations:

| (x-5)^2+6=42 | | w-2.5=9.41 | | x^2-75x=-10x | | -9(z+12)=0 | | 8x-6x+198=8x+72 | | 8m-12=4m-6 | | -5=0.2p | | 3x+4=2x+9= | | 3(+2)+y(-3)=0 | | 7(u-1)=5u+9-2(-5u-1) | | 6q-24=6 | | 2(+2)+y(-3)=0 | | -5x+7=-5x+7=22 | | 4(q-2)=20 | | k1/6=13 | | 10a-a=2a | | 1m+2/3m+2=2+1/6 | | 3t-9=7t+7 | | 4x+35=6x-2 | | ||8x+6|−15|=7 | | 23x+9=21 | | 118+x=110 | | 106=10x-23 | | (+2)+y(-1)=0 | | x(+1)+(-2)=0 | | 3x+x-6=24 | | 5+x+x=51 | | x(x-9)=3(x-15) | | 13x-7+83=180 | | 63=-14+7n | | 200m-125m+48,750=50,250-175m | | 11(y-2)+3y=2y+14 |

Equations solver categories