(x-2)*(x+5)=9x+10

Simple and best practice solution for (x-2)*(x+5)=9x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)*(x+5)=9x+10 equation:



(x-2)(x+5)=9x+10
We move all terms to the left:
(x-2)(x+5)-(9x+10)=0
We get rid of parentheses
(x-2)(x+5)-9x-10=0
We multiply parentheses ..
(+x^2+5x-2x-10)-9x-10=0
We get rid of parentheses
x^2+5x-2x-9x-10-10=0
We add all the numbers together, and all the variables
x^2-6x-20=0
a = 1; b = -6; c = -20;
Δ = b2-4ac
Δ = -62-4·1·(-20)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{29}}{2*1}=\frac{6-2\sqrt{29}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{29}}{2*1}=\frac{6+2\sqrt{29}}{2} $

See similar equations:

| 2x+1+3x-9=180 | | 3(7x+4)=23 | | 2x+1+3x-9=90 | | 2x+10+3x-15=90 | | -9d=49 | | 3=p÷7 | | 3=p÷70 | | -8z=7 | | 3(7x+1)+15(x-5)=180 | | 3(x+2)-(x-3)=x-5(x+1)+4x | | 5-3=8x | | -2m=-22 | | 5x+13=39-8x | | 20-x+11x=180 | | 9/2x-4=46 | | 3x+13=15-4x | | 4x+31+x+43=90 | | 5/6=-3y | | (5)/(6)=-3y | | Y=3x2-8x+7 | | –3x+9=–3(2x+3)+3(x-4)+1 | | 16c+24=4c+144 | | 9x+18=3x-4 | | 9x+85-4x=90 | | w-8.7=7.89 | | P(n)=0.80+5.50 | | X+2=5xx= | | 17=7+n/10 | | -6(u+2)=-8u-2 | | -6(u+2)=-8-2 | | 8x+3=8xx= | | -6x-27=-6x-8 |

Equations solver categories