(x-2)/(x-5)+(x-3)/(x-5)=2x-5

Simple and best practice solution for (x-2)/(x-5)+(x-3)/(x-5)=2x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)/(x-5)+(x-3)/(x-5)=2x-5 equation:



(x-2)/(x-5)+(x-3)/(x-5)=2x-5
We move all terms to the left:
(x-2)/(x-5)+(x-3)/(x-5)-(2x-5)=0
Domain of the equation: (x-5)!=0
We move all terms containing x to the left, all other terms to the right
x!=5
x∈R
We get rid of parentheses
(x-2)/(x-5)+(x-3)/(x-5)-2x+5=0
We multiply all the terms by the denominator
(x-2)+(x-3)-2x*(x-5)+5*(x-5)=0
We multiply parentheses
-2x^2+(x-2)+(x-3)+10x+5x-25=0
We get rid of parentheses
-2x^2+x+x+10x+5x-2-3-25=0
We add all the numbers together, and all the variables
-2x^2+17x-30=0
a = -2; b = 17; c = -30;
Δ = b2-4ac
Δ = 172-4·(-2)·(-30)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-7}{2*-2}=\frac{-24}{-4} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+7}{2*-2}=\frac{-10}{-4} =2+1/2 $

See similar equations:

| 5e=11e- | | 1.36=2.27−2.32q+q2 | | 3n+75=50+20 | | 11/2*x=-12 | | 17x-2x^2+20=0 | | 2x+(277-x)=360 | | -19+c=51 | | (1/2)(2x-1)=-(1/9)-(4/9) | | 2x+(282-x)=360 | | 2x+(282-2)=180 | | 2(x-7)+(2x+34)=180 | | 2(x-7)+(2x+38)=180 | | -4x+11=-3x+9 | | 2+5x-19+1=-13x+18+9x | | 30t=10t | | 196.63=7(0.05m+20.70+0.20(20.70) | | 3x²-16x=1344 | | -6x^2-54x-24=0 | | -3a=55+8a | | -6-4x=30 | | 8+0.25t=8 | | -12-6p+2=-6p-10 | | p-(p+16)=4(p-4)+2p | | 2.5+b=-1 | | 30+x=20 | | 0.6(x+10)+0.5(x-20)=29 | | b-11=-27 | | 7a-3=2a+42 | | 9x+2=-7-9x | | 165-15c+12c=156 | | y=100-8.9 | | 12x+9=3x-3 |

Equations solver categories