(x-20)+1/3x+(x-10)+40=360

Simple and best practice solution for (x-20)+1/3x+(x-10)+40=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-20)+1/3x+(x-10)+40=360 equation:



(x-20)+1/3x+(x-10)+40=360
We move all terms to the left:
(x-20)+1/3x+(x-10)+40-(360)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
(x-20)+1/3x+(x-10)-320=0
We get rid of parentheses
x+1/3x+x-20-10-320=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-30x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $

See similar equations:

| 16.2+4y=7y+9 | | -17(46a-29)=51) | | (5-x)×7=63 | | 6x-6/2=3x+6/4 | | /3y-7=5y+21 | | Q=30-3/4p | | 7x-6=4-3 | | 30-8z=2(z-5) | | -16a=83 | | 14=5/6f | | x2+2x=168 | | 27=11-4n | | 19+z=10 | | 717=23n-(-73) | | 4n+12=8n | | 43-5x=19+6x | | 40+2z=88 | | 5+7j=-44 | | h/3=95=125 | | 4^3x-1=16 | | 1/25x=12 | | -42=8r=-402 | | 836=8a-(-84) | | (2+x)^3+(2-x)^3=208 | | 12v-40=116 | | z/13-247=-239 | | 40k+40=30k+130 | | b/8-12=2 | | 7x+25=5x+77 | | 3x+37=12x-33 | | 2=t/7-1 | | r/6+75=66 |

Equations solver categories