(x-22)+(2x-215)+(1/2x+11)=180

Simple and best practice solution for (x-22)+(2x-215)+(1/2x+11)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-22)+(2x-215)+(1/2x+11)=180 equation:



(x-22)+(2x-215)+(1/2x+11)=180
We move all terms to the left:
(x-22)+(2x-215)+(1/2x+11)-(180)=0
Domain of the equation: 2x+11)!=0
x∈R
We get rid of parentheses
x+2x+1/2x-22-215+11-180=0
We multiply all the terms by the denominator
x*2x+2x*2x-22*2x-215*2x+11*2x-180*2x+1=0
Wy multiply elements
2x^2+4x^2-44x-430x+22x-360x+1=0
We add all the numbers together, and all the variables
6x^2-812x+1=0
a = 6; b = -812; c = +1;
Δ = b2-4ac
Δ = -8122-4·6·1
Δ = 659320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{659320}=\sqrt{4*164830}=\sqrt{4}*\sqrt{164830}=2\sqrt{164830}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-812)-2\sqrt{164830}}{2*6}=\frac{812-2\sqrt{164830}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-812)+2\sqrt{164830}}{2*6}=\frac{812+2\sqrt{164830}}{12} $

See similar equations:

| -4x+5=6x+4 | | -5x-4=-8-3(x-1) | | 6-4w+3w=w | | 2x-16=26 | | 4x-8=4x-9 | | 2(v-12v)=216v | | x^=98 | | 6=-2/3(7x-2 | | 4x^2-x+4-x-7=0 | | 9(-9-x)=-1 | | 45x+56=0 | | 7x+6(2-x)+18=28+3(6+x) | | 82=20x | | 6(j−88)=18 | | 11+n=3+3n= | | 2(2+3)+8x=6(x-1)+3x | | 10t-8=22 | | 10t−8=22 | | -2.3–5x=10–2x | | (2g+12)=-20 | | 8(3w+10)÷3=-5 | | 3y-28=76 | | 4x+5=4+6x | | 8(3w+10)/3=-5 | | 7^3x-2+2=750 | | -2(2t+10)=24 | | 7m−2=19 | | (3x+5)+x+37=180 | | 5(x-3)-7=10 | | (3x+5)+x=180 | | 6v-19=4v-3 | | 76=3y−-28 |

Equations solver categories