(x-24)+(2x-53)+(1/2x+12)=90

Simple and best practice solution for (x-24)+(2x-53)+(1/2x+12)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-24)+(2x-53)+(1/2x+12)=90 equation:



(x-24)+(2x-53)+(1/2x+12)=90
We move all terms to the left:
(x-24)+(2x-53)+(1/2x+12)-(90)=0
Domain of the equation: 2x+12)!=0
x∈R
We get rid of parentheses
x+2x+1/2x-24-53+12-90=0
We multiply all the terms by the denominator
x*2x+2x*2x-24*2x-53*2x+12*2x-90*2x+1=0
Wy multiply elements
2x^2+4x^2-48x-106x+24x-180x+1=0
We add all the numbers together, and all the variables
6x^2-310x+1=0
a = 6; b = -310; c = +1;
Δ = b2-4ac
Δ = -3102-4·6·1
Δ = 96076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96076}=\sqrt{4*24019}=\sqrt{4}*\sqrt{24019}=2\sqrt{24019}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-310)-2\sqrt{24019}}{2*6}=\frac{310-2\sqrt{24019}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-310)+2\sqrt{24019}}{2*6}=\frac{310+2\sqrt{24019}}{12} $

See similar equations:

| 70=10n | | (x-24)+(2x-53)+(1/2x+12)=180 | | 8m+m+3m-9m+m=8 | | (x-24)=(2x-53)=(1/2x+12) | | j8=8 | | 14r-4r-7r=15 | | 3x-1/2=-16 | | 23x6=()+(3+6) | | -42=-6+4n | | 665+8p=14445555 | | n=n(n+1)/600 | | 3x-1/2=16 | | -16p+-8p+7p—17p+-16p=16 | | -92=-9n+7 | | -118=-20+-35x+7 | | (5x)+(4x-13)+(x)=90 | | (5x)+(4x-13)=180 | | 2-6x=3×+7 | | f(3)=600(1+0.0095/365)365(3) | | (x^2)+4(10x)=192 | | (x^2)+4(10x)=10 | | (5x)+(4x-13)+(x)=180 | | 5x-70=-20 | | 7k+2k-5k-2k=18 | | 3v-2v=19 | | 7x-2=3x+15 | | 8x-12x=-4 | | 5h-3h+h-2h=9 | | 9.8x^2-200x+1120=0 | | 7x-124=2x+56 | | 4z+2z-5z=19 | | 6r+R-6r-r+2r=12 |

Equations solver categories