(x-3)(2x+1)+(2x+1)(4x+3)=0

Simple and best practice solution for (x-3)(2x+1)+(2x+1)(4x+3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)(2x+1)+(2x+1)(4x+3)=0 equation:



(x-3)(2x+1)+(2x+1)(4x+3)=0
We multiply parentheses ..
(+2x^2+x-6x-3)+(2x+1)(4x+3)=0
We get rid of parentheses
2x^2+x-6x+(2x+1)(4x+3)-3=0
We multiply parentheses ..
2x^2+(+8x^2+6x+4x+3)+x-6x-3=0
We add all the numbers together, and all the variables
2x^2+(+8x^2+6x+4x+3)-5x-3=0
We get rid of parentheses
2x^2+8x^2+6x+4x-5x+3-3=0
We add all the numbers together, and all the variables
10x^2+5x=0
a = 10; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·10·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*10}=\frac{-10}{20} =-1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*10}=\frac{0}{20} =0 $

See similar equations:

| 6k+3-3=27+3 | | 6k-3+3=27+3 | | 4q+8=48 | | 12+x*2=62 | | 20x+32=4 | | 40+x=120 | | –9w+1=–7−w | | x=1.5x+-4.5 | | 4x-3+3x^2=0 | | X+6/18=2(x/12) | | (3x+5)(8x+4)=0 | | 2x-10=3x+2 | | 3x+x+24=x | | 5(8x-3)=-5 | | 6(2x+6)=42 | | 2(4x-12)=48 | | 5(4a+4)=140 | | 330120/x=280.00 | | 0.32=2x/x | | 2f^2+1=4f | | 3x+2(4x-4)=4 | | x^2+45x-180=0 | | (1+n)^20=2 | | (5x-4)/(2x+1)-1=0 | | 42x+1=32 | | 7p+10=17 | | 6x+3=3x+1200 | | 50x+30x=120 | | x+153=40x | | 6x+640=3x-320 | | 6x+640=3x-300 | | F(x)=10x+11/5x+4 |

Equations solver categories