(x-3)(2x+1)=x(x+5)

Simple and best practice solution for (x-3)(2x+1)=x(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)(2x+1)=x(x+5) equation:



(x-3)(2x+1)=x(x+5)
We move all terms to the left:
(x-3)(2x+1)-(x(x+5))=0
We multiply parentheses ..
(+2x^2+x-6x-3)-(x(x+5))=0
We calculate terms in parentheses: -(x(x+5)), so:
x(x+5)
We multiply parentheses
x^2+5x
Back to the equation:
-(x^2+5x)
We get rid of parentheses
2x^2-x^2+x-6x-5x-3=0
We add all the numbers together, and all the variables
x^2-10x-3=0
a = 1; b = -10; c = -3;
Δ = b2-4ac
Δ = -102-4·1·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{7}}{2*1}=\frac{10-4\sqrt{7}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{7}}{2*1}=\frac{10+4\sqrt{7}}{2} $

See similar equations:

| b/110=3 | | 7m+12=-4+ | | 5/4x-18=-13 | | x+5+x+3x=120 | | 9x(x+6)–(3x+1)^2=1 | | 6(x-3)=3x-9 | | {4q=2={3q+6 | | x3-4x2-18x+12=0 | | 4+4d=5d-8 | | X^2-17x+63=0 | | 2/3-4/5=5/6w+4/5w | | |4x+12/3|=4 | | 5(3x-4)-3=5(x-3)+52 | | 49-x=269 | | 2x+6=200 | | 98Y-199x=500 | | 8.35=5x÷3(20-x) | | -3x+-7x= | | x2+13x+30=0 | | 9x-2.0=-4+5.8 | | X+2x+3x-x=10 | | 10=5t2-3t | | X-2x-3x+12=0 | | 93=5u+13 | | X+10x-11=0 | | A={x/6x2+x-15=0} | | 2(3x+2)=154 | | -7x-2.0=-x-0.4 | | 2a^2-6a+8=0 | | y+2=-28 | | 42x=312 | | 4x+10+3/x+4=0 |

Equations solver categories