(x-3)/x=2/(x+4)

Simple and best practice solution for (x-3)/x=2/(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)/x=2/(x+4) equation:



(x-3)/x=2/(x+4)
We move all terms to the left:
(x-3)/x-(2/(x+4))=0
Domain of the equation: x!=0
x∈R
Domain of the equation: (x+4))!=0
x∈R
We calculate fractions
((x-3)*(x+4)))/5x^2+(-(2*x)/5x^2=0
We add all the numbers together, and all the variables
((x-3)*(x+4)))/5x^2+(-(+2x)/5x^2=0
We calculate fractions
(((x-3)*(x+4)))*5x^2)/(5x^2+(*5x^2)+(-(+2x)*5x^2)/(5x^2+(*5x^2)=0
We calculate terms in parentheses: +(-(+2x)*5x^2)/(5x^2+(*5x^2), so:
-(+2x)*5x^2)/(5x^2+(*5x^2
We multiply all the terms by the denominator
-(+2x)*5x^2)+((*5x^2)*(5x^2
Back to the equation:
+(-(+2x)*5x^2)+((*5x^2)*(5x^2)
We get rid of parentheses
(((x-3)*(x+4)))*5x^2)/(5x^2+*5x^2+(-(+2x)*5x^2)+((*5x^2)*5x^2=0
We multiply all the terms by the denominator
(((x-3)*(x+4)))*5x^2)+(*5x^2)*(5x^2+((-(+2x)*5x^2))*(5x^2+(((*5x^2)*5x^2)*(5x^2=0

See similar equations:

| 5x+8+x+4+90=180 | | 21x-6-16x+2=17x-9-12x+16 | | x-3/x=2/x+4 | | 4+2(2x+6)=12-x | | -4x=-156 | | 0,004*x=20 | | 4(18)+8y=-30 | | 14x+15x-9+3=-3x+3-9 | | (3+5)d=5d+3d | | 14x-3(x+4)=7 | | 6y+12.5=-25+7+ | | 7-m=20 | | 2d+1=2d+3 | | 8+5g=4g | | 4x+8(-3)=20 | | k/5+2=16 | | 2-x=2x-34 | | c+2c=480 | | 10(x+3)−(−9x−4)=x−5+3-2 | | 3x+23=32 | | X-0.25x=885 | | 3x+13=-16 | | −3(1+6r)=14–r | | (x+5)+x=17 | | X^2+3x-28=(x-7)(x+4) | | ?=(x+1)(x+17) | | A(n)=-6+(n-1) | | 17=(x+1)(x+17) | | 17=(x+1)(x-17) | | 3(n)+4=13 | | 9x^2-10000=0 | | x+1/16=7/8+x-5/9 |

Equations solver categories