(x-34)+(2x-118)+(1/2x+17)=180

Simple and best practice solution for (x-34)+(2x-118)+(1/2x+17)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-34)+(2x-118)+(1/2x+17)=180 equation:



(x-34)+(2x-118)+(1/2x+17)=180
We move all terms to the left:
(x-34)+(2x-118)+(1/2x+17)-(180)=0
Domain of the equation: 2x+17)!=0
x∈R
We get rid of parentheses
x+2x+1/2x-34-118+17-180=0
We multiply all the terms by the denominator
x*2x+2x*2x-34*2x-118*2x+17*2x-180*2x+1=0
Wy multiply elements
2x^2+4x^2-68x-236x+34x-360x+1=0
We add all the numbers together, and all the variables
6x^2-630x+1=0
a = 6; b = -630; c = +1;
Δ = b2-4ac
Δ = -6302-4·6·1
Δ = 396876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396876}=\sqrt{4*99219}=\sqrt{4}*\sqrt{99219}=2\sqrt{99219}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-2\sqrt{99219}}{2*6}=\frac{630-2\sqrt{99219}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+2\sqrt{99219}}{2*6}=\frac{630+2\sqrt{99219}}{12} $

See similar equations:

| 37.1=b8 | | 2x-5=19,5 | | z+51=4z | | −32+11w=727 | | c/2.0=7 | | 4(q+2)=8 | | f(×)=10 | | -26-6v=-5(8v+7) | | 4(4b-6)=4(3b-7) | | 3x+6=2×-24 | | -z=-8-6(-z+8) | | 4(5)+y=13 | | 7y+4-8=35 | | .40x=21 | | g+11=-6 | | 6(6m+3)=-234 | | f2=2.3f= | | t2-2.1+0.8=0 | | 8x-35=60 | | 76x=90 | | -126=7(8v+6) | | 50X+40=60x+20 | | 2(t-7)=-4 | | 13-21y=13 | | 5(1+s)=-9+s | | -14x+40=20x+128 | | 184=124-u | | 6-6p=1-7p | | -3(4x-5)+2x-1=35 | | 2(3y–5)=10y–4 | | e=8.4=1.2 | | `9x+5=6x+6` |

Equations solver categories