(x-35)+(x-42)+x+1/2x=360

Simple and best practice solution for (x-35)+(x-42)+x+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-35)+(x-42)+x+1/2x=360 equation:



(x-35)+(x-42)+x+1/2x=360
We move all terms to the left:
(x-35)+(x-42)+x+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
x+(x-35)+(x-42)+1/2x-360=0
We get rid of parentheses
x+x+x+1/2x-35-42-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x-42*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x-84x-720x+1=0
We add all the numbers together, and all the variables
6x^2-874x+1=0
a = 6; b = -874; c = +1;
Δ = b2-4ac
Δ = -8742-4·6·1
Δ = 763852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{763852}=\sqrt{4*190963}=\sqrt{4}*\sqrt{190963}=2\sqrt{190963}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-874)-2\sqrt{190963}}{2*6}=\frac{874-2\sqrt{190963}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-874)+2\sqrt{190963}}{2*6}=\frac{874+2\sqrt{190963}}{12} $

See similar equations:

| 2a+4=11+a-2+2a | | 6z+2=10z-5 | | 11(m-1)=7(m-(-2)) | | -5d+3=-2d | | -7x-3x+6=116 | | 11g-11g+g=9 | | 50=0.012x^2-0.543x+35.725 | | -7f+55=90 | | -3(-k-5)-(2k-1)+3k-12= | | 3x-7=-x+6x+10 | | 7z+4=2(z-3) | | 1021=7x | | -4/9a=0 | | 10h-8h+6=3h | | 6x+4=  9x−59x−5 | | -5y+9y-4=-3(11y+3)+5 | | -4(x+3)=2x+6-(8x+2) | | −6−6x+1=−11 | | 10h-8h+6=36 | | 5(2x-7)-9=46 | | 6x+-6=x | | 4(5x+8)=24+36 | | 2(-3g-10)=-16g | | F(-x)=3x^2-4x-2 | | 2x+9=-4x+10x | | 76=x+43 | | 1/2(6x+8)=2x-10 | | 4x+10=14x= | | x^2−9x−15=−5 | | 3k-1=7k+24 | | 4x-2=x*2 | | 3(i+2)=9(6-i) |

Equations solver categories