If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-35)+1/2x+(x-46)+x=180
We move all terms to the left:
(x-35)+1/2x+(x-46)+x-(180)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+(x-35)+1/2x+(x-46)-180=0
We get rid of parentheses
x+x+1/2x+x-35-46-180=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x-46*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x-92x-360x+1=0
We add all the numbers together, and all the variables
6x^2-522x+1=0
a = 6; b = -522; c = +1;
Δ = b2-4ac
Δ = -5222-4·6·1
Δ = 272460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272460}=\sqrt{4*68115}=\sqrt{4}*\sqrt{68115}=2\sqrt{68115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-522)-2\sqrt{68115}}{2*6}=\frac{522-2\sqrt{68115}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-522)+2\sqrt{68115}}{2*6}=\frac{522+2\sqrt{68115}}{12} $
| x=-(-4)+-3 | | 50=18-4x | | 0.25q+0.25(q-4)=17.50 | | -2u+16=-7u+6 | | x*2-7=15 | | -4(2x-3)-2x=10 | | 2/5x^+7=17 | | 3x^2-8=25 | | 5w-7=12-5w | | 5x^/4-4=16 | | -1/2-1/3v=-2/7 | | 65+(x+-5)+x=180 | | 3x-3(-2x-10)=-15 | | 41/2+w=61/2 | | 2(3x+8)=-38+6 | | 5n+2=16-2n | | 3+a/4=10 | | 10/2.2=15/n | | -3v-3+7v=4v+1-7 | | 10/2.2=15/m | | 6n+4=31-3n | | 1.8/6=m/15 | | 6z–5=19 | | 8k+8=–16 | | 5=k1 | | 1.8/6=t/15 | | 3x+13=13-x | | .8k+8=–16 | | x(9x-12)=-4 | | 13x=5x+36 | | 5×k=5k | | -13+2n=5+7n-2n |