(x-36)+(1/3x)=180

Simple and best practice solution for (x-36)+(1/3x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-36)+(1/3x)=180 equation:



(x-36)+(1/3x)=180
We move all terms to the left:
(x-36)+(1/3x)-(180)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(x-36)+(+1/3x)-180=0
We get rid of parentheses
x+1/3x-36-180=0
We multiply all the terms by the denominator
x*3x-36*3x-180*3x+1=0
Wy multiply elements
3x^2-108x-540x+1=0
We add all the numbers together, and all the variables
3x^2-648x+1=0
a = 3; b = -648; c = +1;
Δ = b2-4ac
Δ = -6482-4·3·1
Δ = 419892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{419892}=\sqrt{4*104973}=\sqrt{4}*\sqrt{104973}=2\sqrt{104973}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-648)-2\sqrt{104973}}{2*3}=\frac{648-2\sqrt{104973}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-648)+2\sqrt{104973}}{2*3}=\frac{648+2\sqrt{104973}}{6} $

See similar equations:

| 5=t+68/21 | | T2=T2=2n=9 | | 3(2y+7)=18 | | 45.5=4/5x+10 | | -4(2x+7)=18 | | 24(j-951)=912 | | 360=20(w+15) | | 3x+5x-12+5x+19=180 | | a=36+72/2 | | 21(b-968)=546 | | 7x-3(x-9)=2(x-4)+3 | | 21(b −968) =546 | | x+2+15+4x-10=180 | | x+1/3x=28 | | 5(3x+4)=10(2x+1) | | -3/2s=-1/2 | | 2(x-3)-7=18*5(x+4) | | 26f+76=986 | | (-3a/4)(-5)=2 | | 63-4m=51 | | (2x-6)/3=5+(x+2)74 | | 3n^2-4n+32=0 | | 63-4m=47 | | 4/5r=-3 | | X=6x-90 | | 1/7x-1/7=-2 | | 9x-3(x-9)=3(x-5)+5 | | 2.5(10-y)+27.5y=250 | | P(6)=9x^2-7x+8 | | 2x-5=-15+3x | | u+168/13=31 | | 3(x-15)+2x=80 |

Equations solver categories