If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-4)(4+x)=54(x-5)(x-10)
We move all terms to the left:
(x-4)(4+x)-(54(x-5)(x-10))=0
We add all the numbers together, and all the variables
(x-4)(x+4)-(54(x-5)(x-10))=0
We use the square of the difference formula
x^2-(54(x-5)(x-10))-16=0
We multiply parentheses ..
x^2-(54(+x^2-10x-5x+50))-16=0
We calculate terms in parentheses: -(54(+x^2-10x-5x+50)), so:We get rid of parentheses
54(+x^2-10x-5x+50)
We multiply parentheses
54x^2-540x-270x+2700
We add all the numbers together, and all the variables
54x^2-810x+2700
Back to the equation:
-(54x^2-810x+2700)
x^2-54x^2+810x-2700-16=0
We add all the numbers together, and all the variables
-53x^2+810x-2716=0
a = -53; b = 810; c = -2716;
Δ = b2-4ac
Δ = 8102-4·(-53)·(-2716)
Δ = 80308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80308}=\sqrt{4*20077}=\sqrt{4}*\sqrt{20077}=2\sqrt{20077}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(810)-2\sqrt{20077}}{2*-53}=\frac{-810-2\sqrt{20077}}{-106} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(810)+2\sqrt{20077}}{2*-53}=\frac{-810+2\sqrt{20077}}{-106} $
| 9r^2+7r=-9 | | 7n-54=10 | | x-3.5=1/4 | | -2.5-2x=-10.5 | | x+4/5=1/2+7/5 | | -2.5-2x=-4.5 | | x+(x+3)=19 | | (6.5+l)=34 | | x+1/4=3/4+0.5 | | -5v^2-3v=10 | | 1/9*a=6 | | 48=-8+4m | | x+3/10=5/8+0.1 | | 6=1/2z | | 0.05x-0.6=9.85 | | 7b+-45=-45 | | x+4/5=1.25 | | 5x-4+4x+1=180 | | x+2/7=3.5 | | 12/x=11/17 | | x+1/9=1/7 | | y+1.8=14.7 | | 0.05x-0.6=1.3 | | 27=7+3-1+2x-x+x | | x+¼=⅔ | | 11=6y-25 | | 7*(3/7+5/7)+5y=3 | | Y=1.5(x-2)2-6 | | 6u-6=9u-36 | | 38x+3=4 | | -17=5+2v | | -33.7+1.5x=-26.2 |