(x-4)-(x+1)=(x-4)(x+2)

Simple and best practice solution for (x-4)-(x+1)=(x-4)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-4)-(x+1)=(x-4)(x+2) equation:



(x-4)-(x+1)=(x-4)(x+2)
We move all terms to the left:
(x-4)-(x+1)-((x-4)(x+2))=0
We get rid of parentheses
x-x-((x-4)(x+2))-4-1=0
We multiply parentheses ..
-((+x^2+2x-4x-8))+x-x-4-1=0
We calculate terms in parentheses: -((+x^2+2x-4x-8)), so:
(+x^2+2x-4x-8)
We get rid of parentheses
x^2+2x-4x-8
We add all the numbers together, and all the variables
x^2-2x-8
Back to the equation:
-(x^2-2x-8)
We add all the numbers together, and all the variables
-(x^2-2x-8)-5=0
We get rid of parentheses
-x^2+2x+8-5=0
We add all the numbers together, and all the variables
-1x^2+2x+3=0
a = -1; b = 2; c = +3;
Δ = b2-4ac
Δ = 22-4·(-1)·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4}{2*-1}=\frac{-6}{-2} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4}{2*-1}=\frac{2}{-2} =-1 $

See similar equations:

| 0.5(6-2x)=6 | | 12a-12=72. | | 33-4=6+4y-5 | | 2p+10(p-11)=34 | | 2p+10(p—11)=34 | | 1=u-7 | | 2p+10(p-11=34 | | 4y​ =96 | | 8÷p=4 | | 1/3y+3=1/4 | | x•0.2x=300 | | 9=3(v+3)+7v | | (2x^2-15x)^2-35(2x^2+15x)+216=0 | | 38=3a+3a-10 | | 72=10(v-6)+2v | | 4x^2-30x=12x+10x | | y/3=17y= | | 3=15+3(y-5) | | 72=8s+10s | | 6=6(t-8) | | 4+c=1 | | 3=8+q/6 | | 3^2x-3^x+2=3^x+1-27 | | 6v-18=9(v-4) | | 60=6z+4z | | -7x+4+2x=3x+9 | | 6b+3b=63 | | (3e+4)(3e-4)= | | -4+7y+9=3y-4 | | -34+4x=8x | | 5x+3+4=-1 | | x/23=5 |

Equations solver categories