If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-46)+(x-35)+1/2x+x=360
We move all terms to the left:
(x-46)+(x-35)+1/2x+x-(360)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+(x-46)+(x-35)+1/2x-360=0
We get rid of parentheses
x+x+x+1/2x-46-35-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-46*2x-35*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-92x-70x-720x+1=0
We add all the numbers together, and all the variables
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $
| –5p−–12p=–7 | | 39*x=65 | | (x-32.1)/61.9^43=-0.1764 | | 3(5x+7)=-47+53 | | 5/8s=7/5 | | -5m-2=5m-2 | | (x-32.1)/61.9^43=0.1764 | | 18c-127=-3 | | |w+9|/7= | | 2x-25=80 | | x+(2x+100)+(3x+80)=2680 | | 3(2x+9)=-39+54 | | 3(x+2)+1=x+2(4-x) | | x+6x+5=162 | | 3n+9=8 | | 7-x+3-9x=90 | | -k-4=3k-4 | | x^2-14=86 | | 11/60=x/360 | | (200-x)0.7=133 | | 5x+10=2+19x | | G(-3)=x^2-4x | | (x-32.1)/61.9^48=-0.1764 | | (2/3)(b)+5=20-1b | | 11x–(7x–4)=4 | | 5n-5=-15+6n | | -6=1+3a-4 | | 0.1+0.2x+0.3+0.05x=-2.4 | | 8(y-9)=39 | | (x-32.1)/61.9^48=0.1764 | | 5/2x-1=5 | | n+16=01 |