If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-46)+1/2x+(x-35)+x=360
We move all terms to the left:
(x-46)+1/2x+(x-35)+x-(360)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+(x-46)+1/2x+(x-35)-360=0
We get rid of parentheses
x+x+1/2x+x-46-35-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-46*2x-35*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-92x-70x-720x+1=0
We add all the numbers together, and all the variables
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $
| (n+8)+(n+-12)=2n+-4 | | 9x-4+8x-10=18x-2 | | -b^2+b+30=0 | | 4(x-1.50)+2x=30 | | 3(2x-5)-4x=2(x-3)-9 | | x6−15=730 | | -x/4+(-9.8)=-5.6 | | 10=6b-6 | | 12+8k=-140 | | 0.75n+16=2-0.125 | | 9x-4+8x+0=18x-2 | | 6(x−1)=30 | | x-3/5x=4 | | 9-5n=29 | | -8w+3(w-3)=1 | | 2/3x+5=27 | | 3x=(2x+40) | | 4(3n+4)=8(4n+8)+6 | | 5/8x-3/8=4/8x+7/8 | | Y=-7x+224 | | 1/8y-6=-12 | | -136=8+8x | | n=60+15+12+95 | | 4x+1=5+2(2x-4 | | 13-3p=-5(3+20) | | 4=2v-4v | | j/2+7=12 | | 2(3y−6)=42 | | 4.1z+10.5=8.3z | | 1000-1200m=1,500-1175m | | 8n-3n+7=28 | | -79=9x+2 |