(x-5)(2x+1)=(x-1)(x-2)

Simple and best practice solution for (x-5)(2x+1)=(x-1)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)(2x+1)=(x-1)(x-2) equation:



(x-5)(2x+1)=(x-1)(x-2)
We move all terms to the left:
(x-5)(2x+1)-((x-1)(x-2))=0
We multiply parentheses ..
(+2x^2+x-10x-5)-((x-1)(x-2))=0
We calculate terms in parentheses: -((x-1)(x-2)), so:
(x-1)(x-2)
We multiply parentheses ..
(+x^2-2x-1x+2)
We get rid of parentheses
x^2-2x-1x+2
We add all the numbers together, and all the variables
x^2-3x+2
Back to the equation:
-(x^2-3x+2)
We get rid of parentheses
2x^2-x^2+x-10x+3x-5-2=0
We add all the numbers together, and all the variables
x^2-6x-7=0
a = 1; b = -6; c = -7;
Δ = b2-4ac
Δ = -62-4·1·(-7)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-8}{2*1}=\frac{-2}{2} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+8}{2*1}=\frac{14}{2} =7 $

See similar equations:

| 256=-y+148 | | Y=0.79x+9.32 | | 2(-6+x)=x-5/8 | | 6(2x+3)(x-10)=0 | | 14-45=5(x-2)-6 | | 4/15=-d | | 23-47=5(x-1)-4 | | 9a+11=3a+5 | | 5(0)-25=45x | | e=36*36 | | 2z(z+3)=2z^2+6z-7 | | 10=S(q)=0.75q | | 3/4x-5/8=5/16+2x | | 3/4x-5/8=5/162x | | x+(x/1.2)=150000 | | s+1/2=-3/4s-3/8 | | x+x/1.2=150000 | | 5×(x-3)=3x-27 | | 4(2x-1)+4=-24 | | (5/3)w+(5/2)=(7/2)w+(1/6) | | 540-5x=4x | | 9s=4s+40 | | (-1/3u)-(1/8)=(-3/4u)+(5/8) | | 3(x+5)=4(x-10) | | 4(x+0.1)=1.9 | | 0.24-0.02(x+3)=-0.02(1-x) | | 4(r+0.1)=1.9 | | 1-1/2r=6 | | 10r-4=-54 | | 2(x+3)=2(x-4) | | 40=1.8d+16.41 | | -2(2k-18)=76 |

Equations solver categories