(x-5)(x-1)(x-2)=0

Simple and best practice solution for (x-5)(x-1)(x-2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)(x-1)(x-2)=0 equation:


Simplifying
(x + -5)(x + -1)(x + -2) = 0

Reorder the terms:
(-5 + x)(x + -1)(x + -2) = 0

Reorder the terms:
(-5 + x)(-1 + x)(x + -2) = 0

Reorder the terms:
(-5 + x)(-1 + x)(-2 + x) = 0

Multiply (-5 + x) * (-1 + x)
(-5(-1 + x) + x(-1 + x))(-2 + x) = 0
((-1 * -5 + x * -5) + x(-1 + x))(-2 + x) = 0
((5 + -5x) + x(-1 + x))(-2 + x) = 0
(5 + -5x + (-1 * x + x * x))(-2 + x) = 0
(5 + -5x + (-1x + x2))(-2 + x) = 0

Combine like terms: -5x + -1x = -6x
(5 + -6x + x2)(-2 + x) = 0

Multiply (5 + -6x + x2) * (-2 + x)
(5(-2 + x) + -6x * (-2 + x) + x2(-2 + x)) = 0
((-2 * 5 + x * 5) + -6x * (-2 + x) + x2(-2 + x)) = 0
((-10 + 5x) + -6x * (-2 + x) + x2(-2 + x)) = 0
(-10 + 5x + (-2 * -6x + x * -6x) + x2(-2 + x)) = 0
(-10 + 5x + (12x + -6x2) + x2(-2 + x)) = 0
(-10 + 5x + 12x + -6x2 + (-2 * x2 + x * x2)) = 0
(-10 + 5x + 12x + -6x2 + (-2x2 + x3)) = 0

Combine like terms: 5x + 12x = 17x
(-10 + 17x + -6x2 + -2x2 + x3) = 0

Combine like terms: -6x2 + -2x2 = -8x2
(-10 + 17x + -8x2 + x3) = 0

Solving
-10 + 17x + -8x2 + x3 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| (n-6)*2=6 | | 3(a+4)-2a=7(a+6) | | (n+1)*10=20 | | 32-3x=41 | | 6x=2y-18 | | .333x-.25x+.083x=3 | | abs(2x-3)=14 | | abs(x^2-9)=x-1 | | 15b+12b^2= | | -6x+9x-8x=0 | | 6(4x+3)+6(4x+4)+6=48x+48 | | 6x+9x-8x=0 | | 10p+2+3p= | | 10x-6y=-2 | | 7(n+5)=84 | | 3-2x=4x+8 | | 15x+12x^2= | | 20-x=14 | | 3y^2-7-6=0 | | 2y=10x+8 | | v^2+3v-12=0 | | 61/6=61/4 | | 22-2x=16 | | 20-x=4 | | T=4g+4u | | 2x^4+3x^3-2x^2=0 | | T-4u=4g | | 10=-16t^2+17t+6 | | 5m+11=7m-3 | | 3x^2+4x-224=0 | | 6m-6=8m-4 | | 11x^2-500x-2500=0 |

Equations solver categories