(x-5)*(x+5)-(x+5)*(x-5)=20

Simple and best practice solution for (x-5)*(x+5)-(x+5)*(x-5)=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)*(x+5)-(x+5)*(x-5)=20 equation:



(x-5)(x+5)-(x+5)(x-5)=20
We move all terms to the left:
(x-5)(x+5)-(x+5)(x-5)-(20)=0
We use the square of the difference formula
x^2+x^2-25+25-20=0
We add all the numbers together, and all the variables
2x^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $

See similar equations:

| 2(2p-1)=3(p+1) | | (4x+3)/5=(2x+1)/2 | | 3x-4x+6x=15 | | 3/4t-2/3=-11/3 | | (4p-3)/2=1 | | 28+8x-10=6x | | 10^(3x+2)=95 | | X=(5y-18)° | | 10(3x+2)=95 | | 2(x-5)+30+7x-3=180 | | x+10.8=-6.5 | | (-20-x)+2+7x=189 | | 3.5x-5=7x-10 | | 21x^2=−17x+8 | | y=125-5y | | -12(x+12)=168 | | 28x^2=−17x+3 | | -3+2x=3x+5 | | 4x5-7x=14 | | 2(4x−4)+4x+5=-111 | | 2x-7=-3+4x | | Y=-x+20 | | 1/6t=7 | | -3+3x=12x+6 | | ∠A=6x+18∠B=x+93∘ | | 5x+10=-10-5x | | 76/10=w/12 | | 3x+15=3+7x | | 4y+8y=0 | | 3x+30=10+13x | | 8x²+24x+19=10-8x² | | F(x)=13/67 |

Equations solver categories