If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-50)3x=150
We move all terms to the left:
(x-50)3x-(150)=0
We multiply parentheses
3x^2-150x-150=0
a = 3; b = -150; c = -150;
Δ = b2-4ac
Δ = -1502-4·3·(-150)
Δ = 24300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24300}=\sqrt{8100*3}=\sqrt{8100}*\sqrt{3}=90\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-90\sqrt{3}}{2*3}=\frac{150-90\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+90\sqrt{3}}{2*3}=\frac{150+90\sqrt{3}}{6} $
| 5(x+100)-10x+3(4x+11)=596 | | m-18=-19 | | 7a-3=1 | | -5=d/4-3 | | -6.5x+24.6=-46.9 | | 7=x/4-14 | | (w/4)-17=19 | | 2.50g+3=15.5 | | Y=-15/4x-18 | | v/4-11=14 | | 7y-2=2y | | 12b+24=27 | | -0.4/x=2 | | 10n+20=50 | | (N/6)x5=9x5 | | 0.3x=1200 | | 39=x+18 | | n+n+3n=3n+2 | | 14+35/7X-20=28/7x-4 | | a=5/2 | | 2(4y+3y)=0 | | (x-11)=(x+8) | | x+(5x-18)+(4x)=180 | | 3x-3=4x+40 | | 2(7+r)=38 | | x+9=2x+11 | | 6(x-2)+7=6x-4 | | x-25+x-28=x+18 | | 5(5+d)=105 | | b-48+b-38=b+28 | | 5(x-5)+3=5x-22 | | 40(13+k)=1040 |