(x-6/5x)+1=x+4/x

Simple and best practice solution for (x-6/5x)+1=x+4/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-6/5x)+1=x+4/x equation:



(x-6/5x)+1=x+4/x
We move all terms to the left:
(x-6/5x)+1-(x+4/x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+x-6/5x)-(+x+4/x)+1=0
We get rid of parentheses
x-6/5x-x-4/x+1=0
We calculate fractions
x-x+(-6x)/5x^2+(-20x)/5x^2+1=0
We add all the numbers together, and all the variables
(-6x)/5x^2+(-20x)/5x^2+1=0
We multiply all the terms by the denominator
(-6x)+(-20x)+1*5x^2=0
Wy multiply elements
5x^2+(-6x)+(-20x)=0
We get rid of parentheses
5x^2-6x-20x=0
We add all the numbers together, and all the variables
5x^2-26x=0
a = 5; b = -26; c = 0;
Δ = b2-4ac
Δ = -262-4·5·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-26}{2*5}=\frac{0}{10} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+26}{2*5}=\frac{52}{10} =5+1/5 $

See similar equations:

| 16=3u+24+5u | | 12x+6=6x | | a=5000(1+0.12*1) | | 2.9=5.3=0.6x | | j3=4 | | 13y-(-4)=17 | | k+10=11 | | 2y-14-4y=4 | | (x-6/5x)+1=(x+4/x) | | 6x+10=-7x+42 | | 0=15x+30 | | 70+(15+9)w=235 | | 3/5+5m/3=49/15 | | -12x+7-5x=68 | | 5/6h−7/12=−3/4h−13/6 | | 250=90+(25+8)x | | 56h−712=−34h−13 | | 35.71=7g+3.79 | | (h+6)5=2 | | (4^3)^6=4^n | | (a/3)+4=6 | | -1/3b-3=-6/5b-43/10 | | 8=i÷-3+4 | | (18-x7)3+x6=189 | | 5x^2+8=10 | | 4+4|2x-1|=-12 | | 18x+15=-66 | | 5/7s=10 | | 2.7=6.7-0.8x | | |6+x|=1 | | 2-10n=-8n+8 | | 15x=5x-15 |

Equations solver categories