If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-8)3x=180
We move all terms to the left:
(x-8)3x-(180)=0
We multiply parentheses
3x^2-24x-180=0
a = 3; b = -24; c = -180;
Δ = b2-4ac
Δ = -242-4·3·(-180)
Δ = 2736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2736}=\sqrt{144*19}=\sqrt{144}*\sqrt{19}=12\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{19}}{2*3}=\frac{24-12\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{19}}{2*3}=\frac{24+12\sqrt{19}}{6} $
| 42=7(z=3) | | 2e+4e=15 | | b(20)+2b(15)=220 | | 128=9x-5x+32 | | 2(3w+4)=38 | | b(.20)+2b(.15)=2.20 | | -3(6-5b)=6b+36 | | 8/9=4/3x | | 3p3=21p | | -5x-1.5=1.8 | | 3y+30=7y-10 | | 2x+1/x-1=3/5 | | 2x+42=11x-18 | | y/4-6=2y-20 | | (y+1)=0 | | 6=4(x-4)+4 | | x2+10x+8=x | | 6(x+2)-x=4(x-4)+4 | | 14=n/5+6 | | –7p–9=–3+3(p–2) | | 2/7y+5=(-9) | | 8x-17=9x-9 | | 2x+(x-5)=1 | | (y+8)(y+29)=0 | | -5x-2=-x+18 | | 7v+15=4v+33 | | 2x+x-5=1 | | 18.2+2y=6y+7 | | 2+(3x+1)=5x+7 | | 4w+1=8w+17 | | 4/6x-3/6=2/6+5/6x | | 3×(x-6)=2×(x-7) |