(x-9)+(1/2x)=180

Simple and best practice solution for (x-9)+(1/2x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-9)+(1/2x)=180 equation:



(x-9)+(1/2x)=180
We move all terms to the left:
(x-9)+(1/2x)-(180)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(x-9)+(+1/2x)-180=0
We get rid of parentheses
x+1/2x-9-180=0
We multiply all the terms by the denominator
x*2x-9*2x-180*2x+1=0
Wy multiply elements
2x^2-18x-360x+1=0
We add all the numbers together, and all the variables
2x^2-378x+1=0
a = 2; b = -378; c = +1;
Δ = b2-4ac
Δ = -3782-4·2·1
Δ = 142876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{142876}=\sqrt{4*35719}=\sqrt{4}*\sqrt{35719}=2\sqrt{35719}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-378)-2\sqrt{35719}}{2*2}=\frac{378-2\sqrt{35719}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-378)+2\sqrt{35719}}{2*2}=\frac{378+2\sqrt{35719}}{4} $

See similar equations:

| x²-12x+38=0 | | 4(6^x)=148 | | -4(5g+9)=-8g | | 10-8j=-10j-8 | | 1415−16x^2=0 | | 8+4x=2(x-1) | | 17n=-199 | | 12.1+x/6=-7.1 | | 7a-8-12a+4=-5a-4 | | -3g-6=15 | | 2=(x+3)(x-4) | | 5y^6=20 | | 7+2x/3=25 | | 7x-2.7=-6x-7.8 | | y=8=-34 | | X+10+2x+30+4x-30=360° | | 82=t+33 | | (6x+7)/2x=129/18 | | -15/18=10/x | | 25x2=0 | | 52=y+27 | | -7n=36 | | 18=+9v | | x=-x^2+8x+2 | | 15x-2(4+2x)=3x | | (-4)-6+6x=-6x+10 | | -8a+11=-22 | | 8n^2+4n=-4 | | y=-3(-2+3)(-2+1) | | 52+(14x+6)+7=180 | | -151=102+11x | | 38=-6x-88 |

Equations solver categories