(x-x*x)-(2x*2x+x-1)=5+2x-3x*3x

Simple and best practice solution for (x-x*x)-(2x*2x+x-1)=5+2x-3x*3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-x*x)-(2x*2x+x-1)=5+2x-3x*3x equation:



(x-x*x)-(2x*2x+x-1)=5+2x-3x*3x
We move all terms to the left:
(x-x*x)-(2x*2x+x-1)-(5+2x-3x*3x)=0
We add all the numbers together, and all the variables
(+x-x*x)-(x+2x*2x-1)-(2x-3x*3x+5)=0
We get rid of parentheses
x-x*x-x-2x*2x-2x+3x*3x+1-5=0
We add all the numbers together, and all the variables
-2x-x*x-2x*2x+3x*3x-4=0
Wy multiply elements
-1x^2-4x^2+9x^2-2x-4=0
We add all the numbers together, and all the variables
4x^2-2x-4=0
a = 4; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·4·(-4)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{17}}{2*4}=\frac{2-2\sqrt{17}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{17}}{2*4}=\frac{2+2\sqrt{17}}{8} $

See similar equations:

| 22y=7 | | 14n-5n=-9 | | 2-y+27+8=34 | | 3x^2+x=40 | | (0.3+x)-0.140(0.5-x)(0.5-x)=0 | | k/11=4 | | 6x+20=4-+172 | | x-85=138 | | 10x-50=120 | | (4x^2-9x-24)-(x^2-10x+16)=0 | | 100x-50=20 | | x-6=16x | | 6=8(x-(3)/(4))-30 | | 50x+75=60 | | (X-8)(4x+3)-(x-8(x-2)=0 | | -4(x-3)=28 | | (X-8)(4x+3)-(x-8(x-2(=0 | | 10y-5y-8=63.05 | | 5a-1=a+7 | | 20x+25=44 | | -4+3x=19- | | |5x-31|=|9-5x| | | 3x-(2x-(x-(5x+6)))=x-2 | | y+3.45=6 | | y=3/7-2 | | X=3x+(x+80) | | 7a+9=9a | | 234-u=103 | | 87=-u+195 | | 169=29-w | | 7w+42=134 | | y-1/y=6,y3-1/y3 |

Equations solver categories